Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell's pioneering idea of "violent relaxation," predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homogeneous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When varying the initial condition within a family of "water bags" with different initial magnetization and energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium tricritical point.
View Article and Find Full Text PDFWe here discuss the emergence of quasistationary states (QSS), a universal feature of systems with long-range interactions. With reference to the Hamiltonian mean-field model, numerical simulations are performed based on both the original N-body setting and the continuum Vlasov model which is supposed to hold in the thermodynamic limit. A detailed comparison unambiguously demonstrates that the Vlasov-wave system provides the correct framework to address the study of QSS.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2007
A generic feature of systems with long-range interactions is the presence of quasistationary states with non-Gaussian single particle velocity distributions. For the case of the Hamiltonian mean-field model, we demonstrate that a maximum entropy principle applied to the associated Vlasov equation explains known features of such states for a wide range of initial conditions. We are able to reproduce velocity distribution functions with an analytic expression which is derived from the theory with no adjustable parameters.
View Article and Find Full Text PDF