Front Bioeng Biotechnol
May 2023
The deformability of leukocytes is relevant to a wide array of physiological and pathophysiological behaviors. The goal of this study is to provide a detailed, quantitative characterization of the mechanical properties of T cells and how those properties change with activation. We tested T cells and CD8 cells isolated from peripheral blood samples of healthy donors either immediately (naïve population) or after 7 days of activation .
View Article and Find Full Text PDFAdoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells is becoming a promising treatment option for hematological malignancies. However, T cell immunotherapies have mostly failed in individuals with solid tumors. Here, with a CRISPR-Cas9 pooled library, we performed an in vivo targeted loss-of-function screen and identified ST3 β-galactoside α-2,3-sialyltransferase 1 (ST3GAL1) as a negative regulator of the cancer-specific migration of CAR T cells.
View Article and Find Full Text PDFCancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8 T cells face fierce competition with cancer cells for limited nutrients.
View Article and Find Full Text PDFWhile immune checkpoint inhibitors (ICIs) have transformed the therapeutic landscape in oncology, they are effective in select subsets of patients. Efficacy may be limited by tumor-driven immune suppression, of which 1 key mechanism is the development of myeloid-derived suppressor cells (MDSCs). A fundamental gap in MDSC therapeutics is the lack of approaches that target MDSC biogenesis.
View Article and Find Full Text PDFCancer-related fatigue is a common, burdensome symptom of cancer and a side-effect of chemotherapy. While a Mediterranean Diet (MedDiet) promotes energy metabolism and overall health, its effects on cancer-related fatigue remain unknown. In a randomized controlled trial, we evaluated a rigorous MedDiet intervention for feasibility and safety as well as preliminary effects on cancer-related fatigue and metabolism compared to usual care.
View Article and Find Full Text PDFUterine leiomyomas are benign, estrogen-sensitive, fibrotic smooth muscle cell tumors occurring in the uterine myometrium. Leiomyomas are a considerable health burden, with a lifetime prevalence of 80% and limited treatment options. Estrogen and progesterone have positive effects on leiomyoma growth, but little is known about the roles of other hormones.
View Article and Find Full Text PDFCD8 T cell memory offers critical antiviral protection, even in the absence of neutralizing antibodies. The paradigm is that CD8 T cell memory within the lung tissue consists of a mix of circulating T cells and non-circulating T cells. However, based on our analysis, the heterogeneity within the tissue is much higher, identifying T, T, T, and a multitude of populations which do not perfectly fit these classifications.
View Article and Find Full Text PDFAlthough cancer immunotherapy is effective against hematological malignancies, it is less effective against solid tumors due in part to significant metabolic challenges present in the tumor microenvironment (TME), where infiltrated CD8 T cells face fierce competition with cancer cells for limited nutrients. Strong metabolic suppression in the TME is often associated with impaired T cell recruitment to the tumor site and hyporesponsive effector function T cell exhaustion. Increasing evidence suggests that mitochondria play a key role in CD8 T cell activation, effector function, and persistence in tumors.
View Article and Find Full Text PDFEarly recruitment of neutrophils from the blood to sites of tissue infection is a hallmark of innate immune responses. However, little is known about the mechanisms by which apoptotic neutrophils are cleared in infected tissues during resolution and the immunological consequences of in situ efferocytosis. Using intravital multiphoton microscopy, we show previously unrecognized motility patterns of interactions between neutrophils and tissue-resident phagocytes within the influenza-infected mouse airway.
View Article and Find Full Text PDFMitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans.
View Article and Find Full Text PDFWe present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vibration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples.
View Article and Find Full Text PDFMitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψ) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat.
View Article and Find Full Text PDF