Unlabelled: Clinical management of melanomas with NRAS mutations is challenging. Targeting MAPK signaling is only beneficial to a small subset of patients due to resistance that arises through genetic, transcriptional, and metabolic adaptation. Identification of targetable vulnerabilities in NRAS-mutated melanoma could help improve patient treatment.
View Article and Find Full Text PDFA novel Pd-catalysed oxidative coupling between benzoic acids and vinylarenes or acrylates to furnish isocoumarins and phthalides is reported. The reaction proceeds smoothly in molten tetrabutylammonium acetate via a selective C-H bond activation, with very low percentage of ligand-free palladium acetate as the catalyst, under atmospheric pressure of oxygen. Sub-stoichiometric amount of copper acetate is also required as a reoxidant for the palladium.
View Article and Find Full Text PDFA significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances.
View Article and Find Full Text PDFPurpose: Treatment of -mutant melanomas with MAPK inhibitors (MAPKi) results in significant tumor regression, but acquired resistance is pervasive. To understand nonmutational mechanisms underlying the adaptation to MAPKi and to identify novel vulnerabilities of melanomas treated with MAPKi, we focused on the initial response phase during treatment with MAPKi.
Experimental Design: By screening proteins expressed on the cell surface of melanoma cells, we identified the fatty acid transporter CD36 as the most consistently upregulated protein upon short-term treatment with MAPKi.
Introduction: Chemotherapy resistance resulting in incomplete pathologic response is associated with high risk of metastasis and early relapse in breast cancer. The aim of this study was to identify and evaluate biomarkers of treatment-resistant tumor cells.
Methods: We performed a cell surface marker screen in triple-negative breast cancer patient-derived xenograft models treated with standard care genotoxic chemotherapy.
Background: CaSR gene is a candidate for calcium nephrolithiasis. Single-nucleotide polymorphisms (SNPs) encompassing its regulatory region were associated with calcium nephrolithiasis.
Aims: We tested SNPs in the CaSR gene regulatory region associated with calcium nephrolithiasis and their effects in kidney.
Calcium nephrolithiasis may be considered as a complex disease having multiple pathogenetic mechanisms and characterized by various clinical manifestations. Both genetic and environmental factors may increase susceptibility to calcium stones; therefore, it is crucial to characterize the patient phenotype to distinguish homogeneous groups of stone formers. Family and twin studies have shown that the stone transmission pattern is not mendelian, but complex and polygenic.
View Article and Find Full Text PDFCardiovascular complications are the main cause of death in patients with chronic kidney disease (CKD). Among these complications, calcific arteriosclerosis and myocardial hypertrophy are the main predictors of cardiovascular morbidity and mortality. Epidemiological studies have shown their association with hyperparathyroidism, which has therefore been included among the non-traditional cardiovascular risk factors.
View Article and Find Full Text PDFBackground: Experimental evidence indicate that melatonin regulates some renal tubular functions via specific melatonin receptors (MTNRs) located in the kidney of several avian and mammalian species, including humans. We hypothesized that single nucleotide polymorphisms (SNPs) in the melatonin receptor 1A gene (MTNR1A) might influence the risk of calcium nephrolithiasis.
Methods: We performed a systematic analysis of the MTNR1A gene in 246 recurrent calcium stone formers (136 men, 110 women; mean age 40.
Previous studies have demonstrated a gain-of-function of the calcium-sensing receptor (CASR) gene R990G polymorphism. In this study, activation of the R990G CASR stably transfected in HEK-293 (HEK-990G) cells compared with that of the common variant (HEK-wild-type (WT)) by increasing concentrations of CaCl(2) or calcimimetic R-568 caused significantly higher intracellular free calcium concentration ([Ca(2+)](i)) and lower Ca-EC(50). Moreover, the [Ca(2+)](i) oscillation percentage was higher with a larger sinusoidal pattern in HEK-990G.
View Article and Find Full Text PDFBackground: Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated.
View Article and Find Full Text PDF