Background: The amygdala, hippocampus and hypothalamus are critical stress regulatory areas that undergo functional maturation for stress responding initially established during gestational and early postnatal brain development. Fetal alcohol spectrum disorder (FASD), a consequence of prenatal alcohol exposure (PAE), results in cognitive, mood and behavioral disorders. Prenatal alcohol exposure negatively impacts components of the brain stress response system, including stress-associated brain neuropeptides and glucocorticoid receptors in the amygdala, hippocampus and hypothalamus.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a novel category of covalently-closed non-coding RNAs mainly derived from the back-splicing of exons or introns of protein-coding genes. In addition to their inherent high overall stability, circRNAs, have been shown to have strong functional effects on gene expression a multitude of transcriptional and post-transcriptional mechanisms. Furthermore, circRNAs, appear to be particularly enriched in the brain and able to influence both prenatal development and postnatal brain function.
View Article and Find Full Text PDFBackground: Fetal alcohol spectrum disorders (FASD) occur in children who were exposed to alcohol in utero and are manifested in a wide range of neurocognitive deficits. These deficits could be caused by alterations to the cortical microvasculature that are controlled by post-transcriptional regulators such as microRNAs.
Methods: Using an established mouse model of moderate prenatal alcohol exposure (PAE), we isolated cortices (CTX) and brain microvascular endothelial cells (BMVECs) at embryonic day 18 (E18) and examined the expression of miR-150-5p and potential downstream targets.
The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo.
View Article and Find Full Text PDFThis review addresses underlying physiological, cellular, and molecular factors that alter the developing fetal brain stress circuits and responses of the hypothalamic-pituitary-adrenal (HPA) axis caused by maternal stress and prenatal alcohol exposure (PAE). An emphasis is placed on the contribution of the placenta following maternal stress separately, and as a co-occurrence with PAE. Altered fetal HPA axis ultimately results in dysregulation of the brain stress-response system long after birth and possibly lifelong.
View Article and Find Full Text PDFChIP-qPCR permits the study of protein and chromatin interactions. The general technique can apply to the study of the interactions of protein with RNA, and the methylation state of genomic DNA. While the technique is vital to our understanding of epigenetic processes, there is much confusion around the proper normalization methods.
View Article and Find Full Text PDFFetal alcohol spectrum disorders (FASD) are heterogeneous disorders associated with alcohol exposure to the developing fetus that are characterized by a range of adverse neurodevelopmental deficits. Despite the numerous genomics and genetic studies on FASD models, the comprehensive molecular understanding of the mechanisms that underlie FASD-related neurodevelopmental deficits remains elusive. Circular RNAs (circRNAs) are a subtype of long non-coding RNAs that are derived from back-splicing and covalent joining of exons and/or introns of protein-coding genes.
View Article and Find Full Text PDFPreviously, we reported sex-dependent changes to global histone modifications and impairment of executive function in adult mice exposed to moderate levels of arsenic during early development. The present study investigated the effects of developmental arsenic exposure (DAE) on gene specific histone 3 lysine 9 acetylation (H3K9ac) and tri-methylation (H3K9me3) in the frontal cortex of male and female adult C57BL/6J mice. Dams were exposed to 50ppb arsenic in drinking water prior to and throughout gestation, and until pup weaning; once weened, the pups were given tap water (< 5ppb arsenic) and raised to postnatal day 70.
View Article and Find Full Text PDFThe rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model.
View Article and Find Full Text PDFBackground: Fetal alcohol spectrum disorders (FASD) commonly include deficits in learning, memory, and executive control that can have a severe negative impact on quality of life across the life span. It is still unclear how prenatal alcohol exposure (PAE) affects executive control processes, such as control over reward seeking, that lead to inappropriate behavior later in life. Learning and reinstatement of a previously learned response after extinction is a simple, well-validated measure of both acquisition of a rewarded instrumental response and sensitivity to reward and reward-associated cues.
View Article and Find Full Text PDFHyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats.
View Article and Find Full Text PDFBackground: Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE.
View Article and Find Full Text PDFSeveral studies have demonstrated that exposure to arsenic in drinking water adversely affects brain development and cognitive function in adulthood. While the mechanism by which arsenic induces adverse neurological outcomes remains elusive, studies suggest a link between reduced levels of histone acetylation and impaired performance on a variety of behavioral tasks following arsenic exposure. Using our developmental arsenic exposure (DAE) paradigm, we have previously reported reduced histone acetylation and associated histone acetyltransferase enzyme expression in the frontal cortex of C57BL/6J adult male mice, with no changes observed in the female frontal cortex.
View Article and Find Full Text PDFExtensive research over the last two decades has advanced our understanding of the pathophysiology of ischemic stroke. However, current pharmacologic therapies are still limited to rapid reperfusion using thrombolytic agents, and neuroprotective approaches that can reduce the consequences of ischemic and reperfusion injury, are still not available. To bridge this gap, we have evaluated the long-term efficacy and therapeutic time window of a novel peptide-based neuroprotectant TAT-STEP, derived from the brain-enriched and neuron-specific tyrosine phosphatase STEP.
View Article and Find Full Text PDFBackground: The goal of this study was to evaluate the expression and serine 9 phosphorylation of glycogen synthase kinase (GSK-3β) within the adult hippocampal dentate gyrus (DG) in a preclinical mouse model of fetal alcohol spectrum disorders. GSK-3β is a multifunctional kinase that modulates many hippocampal processes affected by gestational alcohol, including synaptic plasticity and adult neurogenesis. GSK-3β is a constitutively active kinase that is negatively regulated by phosphorylation at the serine 9 residue.
View Article and Find Full Text PDFExposure to arsenic, a common environmental toxin found in drinking water, leads to a host of neurological pathologies. We have previously demonstrated that developmental exposure to a low level of arsenic (50ppb) alters epigenetic processes that underlie deficits in adult hippocampal neurogenesis leading to aberrant behavior. It is unclear if arsenic impacts the programming and regulation of embryonic neurogenesis during development when exposure occurs.
View Article and Find Full Text PDFPrenatal alcohol exposure (PAE) results in fetal alcohol spectrum disorder (FASD), which is characterized by a wide range of cognitive and behavioral deficits that may be linked to impaired hippocampal function and adult neurogenesis. Preclinical studies in mouse models of FASD indicate that PAE markedly attenuates enrichment-mediated increases in the number of adult-generated hippocampal dentate granule cells (aDGCs), but whether synaptic activity is also affected has not been studied. Here, we utilized retroviral birth-dating coupled with whole cell patch electrophysiological recordings to assess the effects of PAE on enrichment-mediated changes in excitatory and inhibitory synaptic activity as a function of DGC age.
View Article and Find Full Text PDFJ Pregnancy Child Health
October 2015
Research identifying connections between the gastrointestinal flora and human health has developed at a rapid pace. Several studies link the gut microbiome to a variety of biological functions beyond the gastrointestinal tract. Changes in our diets, including the consumption of artificial sweeteners, have profound effects on the composition of the gut microbiome and can, in turn, affect brain function, glucose tolerance, and inflammation.
View Article and Find Full Text PDFPreviously we have shown that prenatal moderate arsenic exposure (50 ppb) disrupts glucocorticoid receptor (GR) programming and that these changes continue into adolescence in males. However, it was not clear what the molecular mechanisms were promoting these GR programming changes or if these changes occurred in arsenic-exposed females. In the present studies, we assessed the effects of arsenic on protein and mRNA of the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (Hsd) isozymes and compared the levels of methylation within the promoters of the Nr3c1 and Hsd11b1 genes in female fetal brain at embryonic days (E) 14 and 18.
View Article and Find Full Text PDFExposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed.
View Article and Find Full Text PDFEpidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain.
View Article and Find Full Text PDFFragile X mental retardation protein (FMRP) and its autosomal paralog FXR2P are selective neuronal RNA-binding proteins, and mice that lack either protein exhibit cognitive deficits. Although double-mutant mice display more severe learning deficits than single mutants, the molecular mechanism behind this remains unknown. In the present study, we discovered that FXR2P (also known as FXR2) is important for neuronal dendritic development.
View Article and Find Full Text PDFBackground: The clinical course of individuals exposed to alcohol in utero is influenced by multiple factors, including the social environments of the gravid female and offspring. In the present studies we focused on the effects of prenatal alcohol exposure (PAE) and the prenatal and early-life social environments on the hippocampal formation, as impaired development and functioning of this brain region have been implicated in several of the adverse cognitive outcomes associated with PAE.
Methods: We combined our PAE mouse model with 2 conditions of housing pregnant dams and their preweanling offspring: the standard nest (SN), in which a dam is individually housed prior to parturition and then remains isolated with her offspring, and the communal nest (CN), in which multiple dams are housed together prior to parturition and then following delivery the moms and their litters share a nest.