Atten Percept Psychophys
July 2024
Humans and animals share the cognitive ability to quickly extract approximate number information from sets. Main psychophysical models suggest that visual approximate numerosity relies on segmented units, which can be affected by Gestalt rules. Indeed, arrays containing spatial grouping cues, such as connectedness, closure, and even symmetry, are underestimated compared to ungrouped arrays with equal low-level features.
View Article and Find Full Text PDFPsychon Bull Rev
August 2022
There is an intense debate surrounding the origin of spatial-numerical associations (SNAs), according to which small numbers are mapped onto the left side of the space and large numbers onto the right. Despite evidence suggesting that SNAs would emerge as an innate predisposition to map numerical information onto a left-to-right spatially oriented mental representation, alternative accounts have challenged these proposals, maintaining that such a mapping would be the result of a mere spatial frequency (SF) coding of any visual image. That is, any smaller or larger array of objects would naturally contain more low or high SF information and, accordingly, each hemisphere would be preferentially tuned only for one SF range (e.
View Article and Find Full Text PDFThe visual mechanisms underlying approximate numerical representation are still intensely debated because numerosity information is often confounded with continuous sensory cues (e.g., texture density, area, convex hull).
View Article and Find Full Text PDFWhile seminal theories suggest that nonsymbolic visual numerosity is mainly extracted from segmented items, more recent views advocate that numerosity cannot be processed independently of nonnumeric continuous features confounded with the numerical set (i.e., such as the density, the convex hull, etc.
View Article and Find Full Text PDFHow non-symbolic numerosity is visually extracted remains a matter of intense debate. Most evidence suggests that numerosity is directly extracted on individual objects following Weber's law, at least for a moderate numerical range. Alternative accounts propose that, whatever the range, numerosity is indirectly derived from summary texture-statistics of the raw image such as spatial frequency (SF).
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
March 2021
The past few years have witnessed a fervent theoretical debate about the exact visual mechanisms supporting nonsymbolic number processing. The idea that quantity information is extracted through a primitive visual segmentation algorithm has been challenged by recent models, which rather tap on low-level features confounded with numerosity (i.e.
View Article and Find Full Text PDFThe exact visual mechanisms underpinning the approximate number system are still debated. Recent evidence suggests that numerosity is extracted on segmented visual objects, at least for a moderate numerical range (e.g.
View Article and Find Full Text PDFLeibovich et al. argue that the evidence in favor of a perceptual mechanism devoted to the extraction of numerosity from visual collections is unsatisfactory and propose to replace it with an unspecific mechanism capturing approximate magnitudes from continuous dimensions. We argue that their representation of the evidence is incomplete and that their theoretical proposal is too vague to be useful.
View Article and Find Full Text PDFBackground: A significant debate surrounds the nature of the cognitive mechanisms involved in non-symbolic number estimation. Several studies have suggested the existence of the same cognitive system for estimation of time, space, and number, called "a theory of magnitude" (ATOM). In addition, researchers have proposed the theory that non-symbolic number abilities might support our mathematical skills.
View Article and Find Full Text PDFWe report an efficient, high fidelity trypsin digestion method for peptide map analysis. This method minimizes artifacts caused by the sample preparation process, and we show its utility for the accurate determination of succinimide formation in a degraded monoclonal antibody product. A basic charge variant was detected by imaged capillary isoelectric focusing and was shown with reduced antigen binding and biological activity.
View Article and Find Full Text PDF