Publications by authors named "Andrea A Kuhn"

Article Synopsis
  • Dystonia is a common movement disorder with a complex genetic background, showing significant variability in its clinical presentation and genetics.
  • The study involved exome sequencing of nearly 1,924 patients, mainly from two major registries, focusing on those with genetic prescreening negative results and early age at onset.
  • Researchers discovered 137 likely pathogenic variants in 51 genes among the patients, with many being novel, highlighting the challenges in diagnosing and understanding the disorder's genetic links.
View Article and Find Full Text PDF

Subthalamic (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) patients not only improves kinematic parameters of movement but also modulates cognitive control in the motor and non-motor domain, especially in situations of high conflict. The objective of this study was to investigate the relationship between DBS-induced changes in functional connectivity at rest and modulation of response- and movement inhibition by STN-DBS in a visuomotor task involving high conflict. During DBS ON and OFF conditions, we conducted a visuomotor task in 14 PD patients who previously underwent resting-state functional MRI (rs-fMRI) acquisitions DBS ON and OFF as part of a different study.

View Article and Find Full Text PDF

Background: Segmented electrodes for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) enable directional current steering leading to expanded programming options.

Objective: This retrospective study covering a longitudinal period of up to 7 years compares the efficacy of segmented and non-segmented leads in motor symptom alleviation and reduction of dopaminergic medication in PD patients treated in a specialized center and assesses the long-term use of directional steering in clinical routine.

Methods: Demographic data and clinical scores before surgery and at 12-month follow-up (12MFU) as well as stimulation parameters at 12MFU and last follow-up (LFU) were assessed in all patients implanted with segmented leads between 01/2016 and 12/2019 and non-segmented leads in a corresponding time-period.

View Article and Find Full Text PDF
Article Synopsis
  • Dystonia is a movement disorder linked to an imbalance in brain pathways involving the striatum and internal pallidum, but its neuronal causes are not fully understood.
  • This study conducted invasive recordings from ten dystonia patients using deep brain stimulation electrodes to observe brain activity across different basal ganglia nuclei.
  • Findings showed that low-frequency brain activity between the striatum and internal pallidum correlates with the severity of dystonic symptoms, highlighting the importance of the direct striato-pallidal pathway in the disorder's development.
View Article and Find Full Text PDF

Background: Comprehensive characterization of the metabolome in cerebrospinal fluid (CSF) and serum by Nuclear Magnetic Resonance (NMR) spectroscopy may identify biomarkers and contribute to the understanding of the pathophysiology of neurological diseases.

Methods: Metabolites were determined by NMR spectroscopy in stored CSF/serum samples of 20 patients with Parkinson's disease, 25 patients with other neuro-degenerative diseases, 22 patients with cerebral ischemia, 48 patients with multiple sclerosis, and 58 control patients with normal CSF findings. The data set was analysed using descriptive and multivariate statistics, as well as machine learning models.

View Article and Find Full Text PDF
Article Synopsis
  • A large-scale genome-wide association study (GWAS) was conducted with over 6000 participants to investigate genetic risk factors for isolated dystonia, aiming to improve upon earlier studies that found no significant genetic links.
  • The study included 4303 dystonia patients and 2362 healthy controls, analyzing various factors like age of onset and affected body areas, but ultimately failed to identify any common genetic variants associated with dystonia.
  • The findings suggest that isolated dystonia may not be influenced by common genetic variations, highlighting the need for more extensive studies like whole-genome sequencing to uncover potential genetic contributions.
View Article and Find Full Text PDF

Background: The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections.

Methods: Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores.

View Article and Find Full Text PDF

Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is a serious complication following deep brain stimulation (DBS) but only received little attention. Its main risk factors are higher age and preoperative cognitive deficits. These are also main risk factors for long-term cognitive decline after DBS in Parkinson's disease (PD).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a shorter version of the Progressive Supranuclear Palsy quality of life scale (PSP-QoL) to make it easier for patients, especially those with cognitive impairments, to complete.
  • Involved a retrospective analysis of data from 245 PSP patients in Germany, resulting in a condensed 12-item scale that covers mental and physical aspects of daily living.
  • The new scale, called the PSP-ShoQoL, showed strong correlations with existing measures of quality of life and demonstrated its sensitivity to changes over time.
View Article and Find Full Text PDF
Article Synopsis
  • Recent studies have found a brain network linked to improvement in Parkinson's disease (PD) after deep brain stimulation (DBS), called the PD response network.
  • The study explored how noninvasive multifocal transcranial direct current stimulation (tDCS) affects motor symptoms in PD by targeting this network.
  • Results showed that active tDCS led to a significant reduction in PD symptoms compared to sham stimulation, suggesting noninvasive stimulation can effectively improve motor function in PD patients.
View Article and Find Full Text PDF

The ability to initiate volitional action is fundamental to human behaviour. Loss of dopaminergic neurons in Parkinson's disease is associated with impaired action initiation, also termed akinesia. Both dopamine and subthalamic deep brain stimulation (DBS) can alleviate akinesia, but the underlying mechanisms are unknown.

View Article and Find Full Text PDF

Excessive stride variability is a characteristic feature of cerebellar ataxias, even in pre-ataxic or prodromal disease stages. This study explores the relation of variability of arm swing and trunk deflection in relationship to stride length and gait speed in previously described cohorts of cerebellar disease and healthy elderly: we examined 10 patients with spinocerebellar ataxia type 14 (SCA), 12 patients with essential tremor (ET), and 67 healthy elderly (HE). Using inertial sensors, recordings of gait performance were conducted at different subjective walking speeds to delineate gait parameters and respective coefficients of variability (CoV).

View Article and Find Full Text PDF

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases.

View Article and Find Full Text PDF
Article Synopsis
  • Deep Brain Stimulation (DBS) effectively improves symptoms of Parkinson's disease, including tremor, bradykinesia, rigidity, and axial symptoms, by stimulating specific white matter tracts.
  • A study involving 237 patients identified distinct brain tracts linked to improvements in each symptom, with tremor associated with the primary motor cortex and cerebellum, and axial symptoms linked to the supplementary motor cortex and brainstem.
  • An introduced algorithm utilizes these symptom-tract connections to tailor DBS settings for individual patients, aiming to enhance treatment effectiveness based on the most impactful symptoms for each person.
View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network.

View Article and Find Full Text PDF

Subthalamic beta band activity (13-35 Hz) is known as a real-time correlate of motor symptom severity in Parkinson's disease (PD) and is currently explored as a feedback signal for closed-loop deep brain stimulation (DBS). Here, we investigate the interaction of movement, dopaminergic medication, and deep brain stimulation on subthalamic beta activity in PD patients implanted with sensing-enabled, implantable pulse generators. We recorded subthalamic activity from seven PD patients at rest and during repetitive movements in four conditions: after withdrawal of dopaminergic medication and DBS, with medication only, with DBS only, and with simultaneous medication and DBS.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed 14 cases of oculogyric crises and identified a shared neural network involved, which includes areas such as the basal ganglia, thalamus, brainstem, and cerebellum.
  • * The study found that this network correlates with gene expression for dopamine receptors, specifically DRD2, linking specific brain lesions to the occurrence of oculogyric crises due to D2 receptor blockage.
View Article and Find Full Text PDF

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple system atrophy (MSA) is a serious disease that affects movement and is hard to treat.
  • Researchers studied MSA patients to see what other health problems they have and how many medications they take.
  • They found that MSA patients have more health issues, especially related to the bladder and kidneys, and take more medications, which can lead to dangerous drug interactions.
View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance.

View Article and Find Full Text PDF

Introduction: The clinical implementation of chronic electrophysiology-driven adaptive deep brain stimulation (DBS) algorithms in movement disorders requires reliable representation of motor and non-motor symptoms in electrophysiological biomarkers, throughout normal life (naturalistic). To achieve this, there is the need for high-resolution and -quality chronic objective and subjective symptom monitoring in parallel to biomarker recordings. To realize these recordings, an active participation and engagement of the investigated patients is necessary.

View Article and Find Full Text PDF

Although dopamine replacement therapy remains a core component of Parkinson's disease treatment, the onset of motor fluctuations and dyskinetic movements might require a range of medical and surgical approaches from a multidisciplinary team, and important new approaches in the delivery of dopamine replacement are becoming available. The more challenging, wide range of non-motor symptoms can also have a major impact on the quality of life of a patient with Parkinson's disease, and requires careful multidisciplinary management using evidence-based knowledge, as well as appropriately tailored strategies according to the individual patient's needs. Disease-modifying therapies are urgently needed to prevent the development of the most disabling refractory symptoms, including gait and balance difficulties, cognitive impairment and dementia, and speech and swallowing impairments.

View Article and Find Full Text PDF