The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years.
View Article and Find Full Text PDFMediterranean marine biota suffers from various anthropogenic threats. Among them, pollutants such as mercury (Hg) represent important environmental issues that are exacerbated by bioaccumulation and bioamplification along food webs via its organic form, monomethylmercury (MMHg). To date, very little is known regarding the impact of mercury on Porifera and the few available studies have been exclusively focused on Demospongiae.
View Article and Find Full Text PDFCell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (), the (), and the . The prevailing dogma is that at the , E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature.
View Article and Find Full Text PDFVanadium (V) concentrations in organisms are usually very low. To date, among animals, only some urochordate and annelid species contain very high levels of V in their tissues. A new case of hyper-accumulation of V in a distinct animal phylum (Porifera), namely, the two homoscleromorph sponge species Oscarella lobularis and O.
View Article and Find Full Text PDFCell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth.
View Article and Find Full Text PDFBackground: Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera.
Results: We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida.
Epithelial tissues acquire their integrity and function through the apico-basal polarization of their constituent cells. Proteins of the PAR and Crumbs complexes are pivotal to epithelial polarization, but the mechanistic understanding of polarization is challenging to reach, largely because numerous potential interactions between these proteins and others have been found, without a clear hierarchy in importance. We identify the regionalized and segregated organization of members of the PAR and Crumbs complexes at epithelial apical junctions by imaging endogenous proteins using stimulated-emission-depletion microscopy on Caco-2 cells, and human and murine intestinal samples.
View Article and Find Full Text PDFBackground: The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals.
View Article and Find Full Text PDFMechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins.
View Article and Find Full Text PDFTo better understand the origin of animal cell types, body plans, and other morphological features, further biological knowledge and understanding are needed from non-bilaterian phyla, namely, Placozoa, Ctenophora, and Porifera. This chapter describes recent cell staining approaches that have been developed in three phylogenetically distinct sponge species-the homoscleromorph Oscarella lobularis, and the demosponges Amphimedon queenslandica and Lycopodina hypogea-to enable analyses of cell death, proliferation, and migration. These methods allow for a more detailed understanding of cellular behaviors and fates, and morphogenetic processes in poriferans, building on current knowledge of sponge cell biology that relies chiefly on classical (static) histological observations.
View Article and Find Full Text PDFThe leading edge-to-cadherin contact transitions that occur during metazoan developmental processes and disease states require fine coordination of Rac and Rho pathways. Recently the elmo-mbc complex, a Rac GEF and RhoGAP19D, a Rho GAP were identified as key, conserved regulators that link Rac and Rho during these transitions. The corresponding Rho GEF and Rac GAP remain hidden amongst the large family of GEF and GAP proteins.
View Article and Find Full Text PDFBackground: The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution.
View Article and Find Full Text PDFMany metazoan developmental processes require cells to transition between migratory mesenchymal- and adherent epithelial-like states. These transitions require Rho GTPase-mediated actin rearrangements downstream of integrin and cadherin pathways. A regulatory toolbox of GEF and GAP proteins precisely coordinates Rho protein activities, yet defining the involvement of specific regulators within a cellular context remains a challenge due to overlapping and coupled activities.
View Article and Find Full Text PDFThe Crumbs (Crb) complex is a key epithelial determinant. To understand its role in morphogenesis, we examined its function in the Drosophila pupal wing, an epithelium undergoing hexagonal packing and formation of planar-oriented hairs. Crb distribution is dynamic, being stabilized to the subapical region just before hair formation.
View Article and Find Full Text PDFAcquisition of multicellularity is a central event in the evolution of Eukaryota. Strikingly, animal multicellularity coincides with the emergence of three intercellular communication pathways - Notch, TGF-β and Wnt - all considered as hallmarks of metazoan development. By investigating Oopsacas minuta and Aphrocallistes vastus, we show here that the emergence of a syncytium and plugged junctions in glass sponges coincides with the loss of essential components of the Wnt signaling (i.
View Article and Find Full Text PDFEpithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells.
View Article and Find Full Text PDFThe localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.
View Article and Find Full Text PDFPolarity protein complexes function during polarized cell migration and a subset of these proteins localizes to the reoriented centrosome during this process. Despite these observations, the mechanisms behind the recruitment of these polarity complexes such as the aPKC/PAR6α complex to the centrosome are not well understood. Here we identify Hook2 as an interactor for the aPKC/PAR6α complex that functions to localize this complex at the centrosome.
View Article and Find Full Text PDFBackground Information: Microvillus inclusion disease (MVID) is a genetic disorder affecting intestinal absorption. It is caused by mutations in MYO5B or syntaxin 3 (STX3) affecting apical membrane trafficking. Morphologically, MVID is characterised by a depletion of apical microvilli and the formation of microvillus inclusions inside the cells, suggesting a loss of polarity.
View Article and Find Full Text PDFWhile sequencing DNA purified from the homoscleromorph sponge Oscarella lobularis, we detected a large number of reads with strong similarity to available alphaproteobacteria gene sequences of family Rhodobacteraceae. Here, we present the genome sequence of this putative sponge symbiont that we propose to designate as "Candidatus Rhodobacter lobularis."
View Article and Find Full Text PDFWe report the complete mitochondrial genome sequence of the Mediterranean glass sponge Oopsacas minuta. This 19-kb mitochondrial genome has 24 noncoding genes (22 tRNAs and 2 rRNAs) and 14 protein-encoding genes coding for 11 subunits of respiratory chain complexes and 3 ATP synthase subunits.
View Article and Find Full Text PDFMutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations.
View Article and Find Full Text PDFIntestinal epithelial cells are highly polarized and exhibit a complex architecture with a columnar shape and a specialized apical surface supporting microvilli organized in a brush border. These microvilli are rooted in a dense meshwork of acto-myosin called the terminal web. We have shown recently that Drebrin E, an F-actin-binding protein, is a key protein for the organization of the terminal web and the brush border.
View Article and Find Full Text PDF