Publications by authors named "Andre de O Carvalho"

The objective of this work was to purify and evaluate the antifungal potential of peptides present in immature and ripe fruits of Capsicum chinense Jacq. (accession UENF 1706) on the medical importance yeasts. Initially the proteins of these seedless fruits were extracted, precipitated with ammonium sulfate at 70% saturation, followed by heating at 80 °C.

View Article and Find Full Text PDF

Plant defensins are plant antimicrobial peptides that present diverse biological activities in vitro, including the elimination of Leishmania amazonensis. Plant defensins are considered promising candidates for the development of new drugs. This protozoan genus has great epidemiological importance and the mechanism behind the protozoan death by defensins is unknown, thus, we chose L.

View Article and Find Full Text PDF

Proteins extracted from Capsicum annuum L. fruits were initially subjected to reversed-phase chromatography on HPLC, resulting in eight peptide-rich fractions. All the fractions obtained were tested for their ability to inhibit porcine trypsin and amylase from both human saliva and from larval insect in vitro.

View Article and Find Full Text PDF

Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are produced by a range of organisms as a first line of defense against invaders or competitors. Owing to their broad antimicrobial activity, AMPs have attracted attention as a potential source of chemotherapeutic drugs. The increasing prevalence of infections caused by Candida species as opportunistic pathogens in immunocompromised patients requires new drugs.

View Article and Find Full Text PDF

Aedes aegypti, the principal mosquito vector of yellow fever, dengue fever and chikungunya fever virus-transmitted diseases, is an insect closely associated with humans and their housing habitats. As there is no commercially available vaccine, prevention is the most suggested form of avoiding disease spreading and a number of studies are being developed in order to give support to vector control operations. The present study reports on the identification of a trypsin inhibitor isolated from cotyledons of the Clitoria fairchildiana amazonic tree seeds, which was able to reduce by 87.

View Article and Find Full Text PDF

Jacalin-related lectins (JRLs) encompass cytosolic, nuclear and vacuolar members displaying the jacalin domain in one or more copies or in combination with unrelated domains. Helianthus annuus jacalin (Helja) is a mannose-specific JRL previously identified in the apoplast of Helianthus annuus seedlings, and this protein has been proposed to follow unconventional secretion. Here, we describe the full-length Helja cDNA sequence, which presents a unique jacalin domain (merolectin) and the absence of a signal peptide, confirming that the protein cannot follow the classical ER-dependent secretory pathway.

View Article and Find Full Text PDF

Background: Defensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, PvD1, from Phaseolus vulgaris L. (common bean) seeds.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial peptides (AMPs) are short polymers synthesized by ribosomes, including plant defensins, that serve as a defense mechanism against microorganisms and show promise as new drugs for diseases like Leishmaniasis.
  • Researchers aimed to enhance the expression and activity of a recombinant defensin from cowpea seeds (Vu-Defr) against Leishmania amazonensis by using various growth media and purification methods.
  • The purified Vu-Defr demonstrated similar structural properties and biological effectiveness as the natural defensin (Vu-Def), successfully eliminating a significant percentage of parasites, indicating the potential of plant defensins as new antiparasitic agents.
View Article and Find Full Text PDF

Plant defensins are cationic peptides that are ubiquitous within the plant kingdom and belong to a large superfamily of antimicrobial peptides found in several organisms collectively called defensins. The primary structure of these peptides includes 45 to 54 amino acid residues with considerable sequence variation. At the level of three-dimensional structure, they are small and globular, composed of three anti-parallel β-sheets and one α-helix, which is highly conserved among these peptides.

View Article and Find Full Text PDF

Plant defensins make up a family of cationic antimicrobial peptides with a characteristic three-dimensional folding pattern stabilized by four disulfide bridges. The aim of this work was the purification and functional expression of a defensin from cowpea seeds and the assessment of its alpha-amylase inhibitory activity. The cDNA encoding the cowpea defensin was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform Escherichia coli cells.

View Article and Find Full Text PDF

Plant defensins are a prominent family of cationic peptides in the plant kingdom. They are structurally and functionally related to defensins that have been previously characterized in mammals and insects. They present molecular masses between 5 and 7kDa and possess a pattern of eight conserved Cys residues.

View Article and Find Full Text PDF

Plant lipid transfer proteins (LTP) are cationic peptides, subdivided into two families, which present molecular masses of around 7 and 10 kDa. The peptides were, thus, denominated due to their ability to reversibly bind and transport hydrophobic molecules in vitro. Both subfamilies possess conserved patterns of eight cysteine residues and the three-dimensional structure reveals an internal hydrophobic cavity that comprises the lipid binding site.

View Article and Find Full Text PDF