Publications by authors named "Andre Zimmermann"

Substrate materials for printed circuit boards must meet ever-increasing requirements to keep up with electronics technology development. Especially in the field of high-frequency applications such as radar and cellular broadcasting, low permittivity and the dielectric loss factor are key material parameters. In this work, the dielectric properties of a high-temperature, thermoplastic PEEK/PEI blend system are investigated at frequencies of 5 and 10 GHz under dried and ambient conditions.

View Article and Find Full Text PDF

Microstructuring techniques, such as laser direct writing, enable the integration of microstructures into conventional polymer lens systems and may be used to generate advanced functionality. Hybrid polymer lenses combining multiple functions such as diffraction and refraction in a single component become possible. In this paper, a process chain to enable encapsulated and aligned optical systems with advanced functionality in a cost-efficient way is presented.

View Article and Find Full Text PDF

The demolding of plastic parts remains a challenging aspect of injection molding. Despite various experimental studies and known solutions to reduce demolding forces, there is still not a complete understanding of the effects that occur. For this reason, laboratory devices and in-process measurement injection molding tools have been developed to measure demolding forces.

View Article and Find Full Text PDF

Hard coatings can be applied onto microstructured molds to influence wear, form filling and demolding behaviors in microinjection molding. As an alternative to this conventional manufacturing procedure, "direct processing" of physical-vapor-deposited (PVD) hard coatings was investigated in this study, by fabricating submicron features directly into the coatings for a subsequent replication via molding. Different diamondlike carbon (DLC) and chromium nitride (CrN) PVD coatings were investigated regarding their suitability for focused ion beam (FIB) milling and microinjection molding using microscope imaging and areal roughness measurements.

View Article and Find Full Text PDF

Increasing demands for precision electronics require individual components such as resistors to be specified, as they can be the limiting factor within a circuit. To specify quality and long-term stability of resistors, noise measurements are a common method. This review briefly explains the theoretical background, introduces the noise index and provides an insight on how this index can be compared to other existing parameters.

View Article and Find Full Text PDF

This paper describes the characterization of inkjet-printed resistive temperature sensors according to the international standard IEC 61928-2. The goal is to evaluate such sensors comprehensively, to identify important manufacturing processes, and to generate data for inkjet-printed temperature sensors according to the mentioned standard for the first time, which will enable future comparisons across different publications. Temperature sensors were printed with a silver nanoparticle ink on injection-molded parts.

View Article and Find Full Text PDF

The assembly of passive components on flexible electronics is essential for the functionalization of circuits. For this purpose, adhesive bonding technology by isotropic conductive adhesive (ICA) is increasingly used in addition to soldering processes. Nevertheless, a comparative study, especially for bending characterization, is not available.

View Article and Find Full Text PDF

In micro-electro-mechanical systems (MEMS) testing high overall precision and reliability are essential. Due to the additional requirement of runtime efficiency, machine learning methods have been investigated in recent years. However, these methods are often associated with inherent challenges concerning uncertainty quantification and guarantees of reliability.

View Article and Find Full Text PDF

The use of focused ion and focused electron beam (FIB/FEB) technology permits the fabrication of micro- and nanometer scale geometries. Therefore, FIB/FEB technology is a favorable technique for preparing TEM lamellae, nanocontacts, or nanowires and repairing electronic circuits. This work investigates FIB/FEB technology as a tool for nanotip fabrication and quantum mechanical tunneling applications at a low tunneling voltage.

View Article and Find Full Text PDF

In this paper, a fluidic capacitive inclination sensor is presented and compared to three types of silicon-based microelectromechanical system (MEMS) accelerometers. MEMS accelerometers are commonly used for tilt measurement. They can only be manufactured by large companies with clean-room technology due to the high requirements during assembly.

View Article and Find Full Text PDF

Essential quality features of pressure sensors are, among other accuracy-related factors, measurement range, operating temperature, and long-term stability. In this work, these features are optimized for a capacitive pressure sensor with a measurement range of 10 bars. The sensor consists of a metal membrane, which is connected to a PCB and a digital capacitive readout.

View Article and Find Full Text PDF

This work presents an embedding process for ultrathin silicon chips in mechanically flexible solder mask resist and their electrical contacting by inkjet printing. Photosensitive solder mask resist is applied by conformal spray coating onto epoxy bonded ultrathin chips with a daisy chain layout. The contact pads are opened by photolithography using UV direct light exposure.

View Article and Find Full Text PDF

ERAP1 is a key aminopeptidase involved in peptide trimming before major histocompatibility complex (MHC) presentation. A single nucleotide polymorphism (SNP) in the ERAP1 gene can lead to impaired trimming activity and affect ERAP1 function. ERAP1 genetic variations have been linked to an increased susceptibility to cancer and autoimmune disease.

View Article and Find Full Text PDF

The production of injection-molding prototypes, e.g., molded interconnect devices (MID) prototypes, can be costly and time-consuming due to the process-specific inability to replace durable steel tooling with quicker fabricated aluminum tooling.

View Article and Find Full Text PDF

Most accelerometers today are based on the capacitive principle. However, further miniaturization for micro integration of those sensors leads to a poorer signal-to-noise ratio due to a small total area of the capacitor plates. Thus, other transducer principles should be taken into account to develop smaller sensors.

View Article and Find Full Text PDF

In order to economize injection molded prototypes, additive manufacturing of, e.g., curable plastics based tools, can be employed, which is known as soft tooling.

View Article and Find Full Text PDF

Flexible electronics is a rapidly growing technology for a multitude of applications. Wearables and flexible displays are some application examples. Various technologies and processes are used to produce flexible electronics.

View Article and Find Full Text PDF

This paper presents a feasibility study of an automated pick-and-place process for ultrathin chips on a standard automatic assembly machine. So far, scientific research about automated assembly of ultrathin chips, with thicknesses less than 50 µm, is missing, but is necessary for cost-effective, high-quantity production of system-in-foil for applications in narrow spaces or flexible smart health systems applied in biomedical applications. Novel pick-and-place tools for ultrathin chip handling were fabricated and a process for chip detachment from thermal release foil was developed.

View Article and Find Full Text PDF

Inkjet technology as a maskless, direct-writing technology offers the potential for structured deposition of functional materials for the realization of electrodes for, e.g., sensing applications.

View Article and Find Full Text PDF

We demonstrate mass production compatible fabrication of polymer-based micro Fresnel lenses by injection compression molding. The extremely robust titanium-molding tool is structured with high precision by focused ion beam milling. In order to achieve optimal shape accuracy in the titanium we use an iterative design optimization.

View Article and Find Full Text PDF

Electron spins in solids constitute remarkable quantum sensors. Individual defect centers in diamond were used to detect individual nuclear spins with a nanometer scale resolution, and ensemble magnetometers rival SQUID and vapor cell magnetometers when taking into account room-temperature operation and size. NV center spins can also detect electric field vectors, despite their weak coupling to electric fields.

View Article and Find Full Text PDF

We identified a novel Kaposi's sarcoma herpesvirus-related rhadinovirus (Colobine gammaherpesvirus 1) in a mantled guereza (Colobus guereza kikuyensis). The animal had multiple oral tumors characterized by proliferation of latent nuclear antigen 1-positive spindle cells and was not co-infected with immunosuppressive simian viruses, suggesting that it had Kaposi sarcoma caused by this novel rhadinovirus.

View Article and Find Full Text PDF

Polymer optics have gained increasing importance in recent years. With advancing requirements for the optical components, the fabrication process remains a challenge. In particular, the fabrication of the mold inserts for the replication process is crucial for obtaining high-quality optical components.

View Article and Find Full Text PDF

In this work, a polymer microlens array (MLA) for a hyperspectral imaging (HSI) system is produced by means of ultraprecision milling (UP-milling) and injection compression molding. Due to the large number of over 12,000 microlenses on less than 2 cm², the fabrication process is challenging and requires full process control. The study evaluates the process chain and optimizes the single process steps to achieve high quality polymer MLAs.

View Article and Find Full Text PDF

A Physical Unclonable Function uses random and inherent properties of a physical entity and can be used to uniquely identify components e.g., for anti-counterfeiting purposes.

View Article and Find Full Text PDF