Publications by authors named "Andre Z Kyme"

Article Synopsis
  • - The study evaluated a new device that monitors ischemic stroke patients by capturing EEG and ECG data to calculate a potential indicator of cerebral blood flow called the Electrocardiography Brain Perfusion index (EBPi).
  • - Seventeen stroke patients used the device over nine hours, providing positive feedback on comfort and satisfaction, with a high overall device comfort rating of 92.5% and data capture efficiency of 95.8%.
  • - No serious adverse events occurred during the study; the device did not hinder patients from receiving clinical care or performing daily tasks, suggesting its feasibility for clinical applications.
View Article and Find Full Text PDF

High-resolution positron emission tomography (PET) relies on the accurate positioning of annihilation photons impinging the crystal array. However, conventional positioning algorithms in light-sharing PET detectors are often limited due to edge effects and/or the absence of additional information for identifying and correcting scattering within the crystal array (known as inter-crystal scattering). This study explores the feasibility of deep neural network (DNN) techniques for more precise event positioning in finely segmented and highly multiplexed PET detectors with light-sharing.

View Article and Find Full Text PDF

Image reconstruction in high resolution, narrow bore PET scanners with depth of interaction (DOI) capability presents a substantial computational challenge due to the very high sampling in detector and image space. The aim of this study is to evaluate the use of a virtual cylinder in reducing the number of lines of response (LOR) for DOI-based reconstruction in high resolution PET systems while maintaining uniform sub-millimetre spatial resolution.Virtual geometry was investigated using the awake animal mousePET as a high resolution test case.

View Article and Find Full Text PDF

. Cerebral CT perfusion (CTP) imaging is most commonly used to diagnose acute ischaemic stroke and support treatment decisions. Shortening CTP scan duration is desirable to reduce the accumulated radiation dose and the risk of patient head movement.

View Article and Find Full Text PDF

Unlabelled: This paper describes a potential method to detect changes in cerebral blood flow (CBF) using electrocardiography (ECG) signals, measured across scalp electrodes with reference to the same signal across the chest-a metric we term the Electrocardiography Brain Perfusion index (EBPi). We investigated the feasibility of EBPi to monitor CBF changes in response to specific tasks. Twenty healthy volunteers wore a head-mounted device to monitor EBPi and electroencephalography (EEG) during tasks known to alter CBF.

View Article and Find Full Text PDF

Purpose: To quantitatively characterise head motion prevalence and severity and to identify patient-based risk factors for motion during cerebral CT perfusion (CTP) imaging of acute ischaemic stroke.

Methods: The head motion of 80 stroke patients undergoing CTP imaging was classified retrospectively into four categories of severity. Each motion category was then characterised quantitatively based on the average head movement with respect to the first frame for all studies.

View Article and Find Full Text PDF

Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and x-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images.

View Article and Find Full Text PDF

Dose reduction in cerebral CT perfusion (CTP) imaging is desirable but is accompanied by an increase in noise that can compromise the image quality and the accuracy of image-based haemodynamic modelling used for clinical decision support in acute ischaemic stroke. The few reported methods aimed at denoising low-dose CTP images lack practicality by considering only small sections of the brain or being computationally expensive. Moreover, the prediction of infarct and penumbra size and location-the chief means of decision support for treatment options-from denoised data has not been explored using these approaches.

View Article and Find Full Text PDF

Purpose: Prospective motion correction is arguably the "silver bullet" solution for magnetic resonance imaging (MRI) studies impacted by motion, applicable to almost any pulse sequence and immune from the spin history artifacts introduced by a moving object. In prospective motion correction, the magnetic field gradients and radio frequency waveforms are adjusted in real time in response to measured head motion so as to maintain the head in a stationary reference frame relative to the scanner. Vital for this approach are accurate and rapidly sampled head pose measurements, which may be obtained optically using cameras.

View Article and Find Full Text PDF

Soil salinity is a global environmental challenge for crop production. Understanding the uptake and transport properties of salt in plants is crucial to evaluate their potential for growth in high salinity soils and as a basis for engineering varieties with increased salt tolerance. Positron emission tomography (PET), traditionally used in medical and animal imaging applications for assessing and quantifying the dynamic bio-distribution of molecular species, has the potential to provide useful measurements of salt transport dynamics in an intact plant.

View Article and Find Full Text PDF

A comprehensive understanding of how the brain responds to a changing environment requires techniques capable of recording functional outputs at the whole-brain level in response to external stimuli. Positron emission tomography (PET) is an exquisitely sensitive technique for imaging brain function but the need for anaesthesia to avoid motion artefacts precludes concurrent behavioural response studies. Here, we report a technique that combines motion-compensated PET with a robotically-controlled animal enclosure to enable simultaneous brain imaging and behavioural recordings in unrestrained small animals.

View Article and Find Full Text PDF

Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting.

View Article and Find Full Text PDF

'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner.

View Article and Find Full Text PDF

In emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data.

View Article and Find Full Text PDF

Positron emission tomography (PET) is a highly sensitive, noninvasive imaging technique for quantifying biological functions of tissues. However, at the time of this study, PET imaging applications had not been reported in the horse. The aim of this exploratory study was to determine whether a portable high-resolution PET scanner could be used to image the equine distal limb.

View Article and Find Full Text PDF

Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal's head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets.

View Article and Find Full Text PDF

Positron emission tomography (PET) is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours.

View Article and Find Full Text PDF

Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR).

View Article and Find Full Text PDF

Line of response (LOR) rebinning is an event-based motion-correction technique for positron emission tomography (PET) imaging that has been shown to compensate effectively for rigid motion. It involves the spatial transformation of LORs to compensate for motion during the scan, as measured by a motion tracking system. Each motion-corrected event is then recorded in the sinogram bin corresponding to the transformed LOR.

View Article and Find Full Text PDF

Purpose: The purpose of the study is to investigate the feasibility of an event driven motion correction method for neurological microPET imaging of small laboratory animals in the fully awake state.

Procedures: A motion tracking technique was developed using an optical motion tracking system and light (<1g) printed targets. This was interfaced to a microPET scanner.

View Article and Find Full Text PDF

Unlabelled: Patient motion can cause image artifacts in single photon emission computed tomography despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward projections. This enables the brain locations to be estimated and data to be correctly incorporated in a three-dimensional (3-D) reconstruction algorithm.

View Article and Find Full Text PDF