Publications by authors named "Andre S Nunes"

The collective dynamics of cells on surfaces and interfaces poses technological and theoretical challenges in the study of morphogenesis, tissue engineering, and cancer. Different mechanisms are at play, including, cell-cell adhesion, cell motility, and proliferation. However, the relative importance of each one is elusive.

View Article and Find Full Text PDF

Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example, they underlie phenomena such as Anderson localization and hyperuniformity, and they are now being exploited to engineer novel materials. Here, we show experimentally that the density of structural defects in a 2D binary colloidal crystal can be engineered with a random potential.

View Article and Find Full Text PDF

In epithelial tissues, cells tightly connect to each other through cell-cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood.

View Article and Find Full Text PDF

Self-propelled active particles are inherently out of equilibrium as they collect energy from their surroundings and transform it into directed motion. A recent theoretical study suggests that binary mixtures of active particles with distinct effective diffusion coefficients exhibit dynamical demixing when their diffusion coefficients differ by more than one order of magnitude. Here, we show that this difference may be reduced drastically in the presence of external fields even when the response to the field is the same for both species.

View Article and Find Full Text PDF

We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a "frozen" degree of loading but with fully ergodic colloidal dynamics on the droplets.

View Article and Find Full Text PDF

We study the formation of bands of colloidal particles driven by periodic external fields. Using Brownian dynamics, we determine the dependence of the band width on the strength of the particle interactions and on the intensity and periodicity of the field. We also investigate the switching (field-on) dynamics and the relaxation times as a function of the system parameters.

View Article and Find Full Text PDF