Publications by authors named "Andre S H Prevot"

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (b) and BrC (b) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)).

View Article and Find Full Text PDF

Biomass burning (BB) is a major source of aerosols and black carbon, thereby exerting an important impact on climate and air quality. Levoglucosan is the most well-recognized organic marker compound of BB and has been used to quantitatively assess BB's contribution to ambient aerosols. However, little is known about levoglucosan's evaporation under atmospheric conditions, primarily due to the uncertainty of its effective saturation vapor concentration (*) and its unknown activity coefficient (γ), in the complex BB emission matrix.

View Article and Find Full Text PDF
Article Synopsis
  • VOCs play a crucial role in forming secondary organic aerosol (SOA), but understanding this process, particularly regarding oxygenated VOCs (OVOCs) and SOA composition, remains complex.
  • In summer 2016, researchers used advanced mass spectrometry techniques in Zurich to analyze VOCs and their oxidation products, identifying five sources of these compounds, primarily from traffic and local emissions, as well as various atmospheric oxidation processes.
  • The findings revealed that both gas phase and aerosol phase OVOCs exhibited similar patterns and characteristics, particularly indicating that biogenic contributions dominated the SOA and that there were distinct differences in chemical behavior between day and night.
View Article and Find Full Text PDF
Article Synopsis
  • Over 300 daily PM filter samples were collected in Xi'an and Chongqing from October 2019 to May 2020 to analyze organic aerosol composition using dual mass spectrometric techniques.
  • Seven distinct sources of water-soluble organic aerosols were identified, including dust and solid fuel combustion-related sources, with consistent findings across both mass spectrometry methods.
  • The study highlights the significance of these techniques for understanding air pollution sources, which is crucial for future research, health studies, and air quality management policies.
View Article and Find Full Text PDF
Article Synopsis
  • Atmospheric fine particulate matter (PM) can adversely affect various human body systems, leading to diseases in the respiratory, circulatory, endocrine, and urogenital systems.
  • The study identifies specific diseases associated with PM exposure such as pulmonary emphysema, malignant thyroid neoplasm, and others, along with significant biological processes and genes involved in those conditions.
  • Crucial pathways impacted by PM are linked to processes like cancer progression, cell cycle regulation, and apoptosis, highlighting PM's role in inducing disease at a molecular level.
View Article and Find Full Text PDF

Organic compounds released from wildfires and residential biomass burning play a crucial role in shaping the composition of the atmosphere. The solubility and subsequent reactions of these compounds in the aqueous phase of clouds and fog remain poorly understood. Nevertheless, these compounds have the potential to become an important source of secondary organic aerosol (SOA).

View Article and Find Full Text PDF

Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na] adducts.

View Article and Find Full Text PDF
Article Synopsis
  • The oxidative potential (OP) of particulate matter (PM) significantly impacts health, yet the sources of PM-OP in India are not well understood.
  • Research conducted at five sites in the Indo-Gangetic Plain identifies major PM sources and their geographical origins, revealing that high PM levels are widespread but driven by local emissions, particularly in Delhi.
  • The study highlights that the main PM sources in Delhi are from traffic exhaust and residential heating, while outside Delhi, biomass burning plays a crucial role, suggesting that improving combustion processes can reduce health risks from PM exposure in northern India.
View Article and Find Full Text PDF
Article Synopsis
  • Fine particulate matter (PM) significantly contributes to global premature deaths, but oxidative potential (OP) serves as a more accurate measure of its health impacts.
  • This study presents the first online measurements of PM OP in Beijing during winter, revealing that primary PM and oxygenated organic aerosol (OOA) are the key contributors to OP.
  • The research indicates that pollution events like fireworks and dust storms affect OP differently, emphasizing the importance of understanding both PM levels and chemical composition to address health risks associated with air pollution.
View Article and Find Full Text PDF

Air quality is of large concern in the city of Krakow, southern Poland. A comprehensive study was launched by us in which two PM fractions (PM and PM) were sampled during 1-year campaign, lasting from April 21, 2018 to March 19, 2019. A suite of modern analytical methods was used to characterize the chemical composition of the collected samples.

View Article and Find Full Text PDF

Organic vapors from biomass burning are a major source of secondary organic aerosols (SOAs). Previous smog chamber studies found that the SOA contributors in biomass-burning emissions are mainly volatile organic compounds (VOCs). While intermediate volatility organic compounds (IVOCs) are efficient SOA precursors and contribute a considerable fraction of biomass-burning emissions, their contribution to SOA formation has not been directly observed.

View Article and Find Full Text PDF

Delhi, among the world's most polluted megacities, is a hotspot of particulate matter emissions, with high contribution from organic aerosol (OA), affecting health and climate in the entire northern India. While the primary organic aerosol (POA) sources can be effectively identified, an incomplete source apportionment of secondary organic aerosol (SOA) causes significant ambiguity in the management of air quality and the assessment of climate change. Present study uses positive matrix factorization analysis on the water-soluble organic aerosol (WSOA) data from the offline-aerosol mass spectrometry (AMS).

View Article and Find Full Text PDF

The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systematic evaporation with a thermal denuder (TD).

View Article and Find Full Text PDF

Organic aerosols (OA) have recently been shown to be the dominant contributor to the oxidative potential of airborne particulate matter in northeastern Spain. We collected PM filter samples every fourth day from January 2017 to March 2018 at two sampling stations located in Barcelona city and Montseny Natural Park, representing urban and rural areas, respectively. The chemical composition of PM was analyzed offline using a broad set of analytical instruments, including high-resolution time-of-flight mass spectrometry (HR-ToF-AMS), a total organic carbon analyzer (TCA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), and thermal-optical carbon analyzer.

View Article and Find Full Text PDF

Aromatic hydrocarbons (ArHCs) and oxygenated aromatic hydrocarbons (ArHC-OHs) are emitted from a variety of anthropogenic activities and are important precursors of secondary organic aerosol (SOA) in urban areas. Here, we analyzed and compared the composition of SOA formed from the oxidation of a mixture of aromatic VOCs by OH and NO radicals. The VOC mixture was composed of toluene (CH), -xylene + ethylbenzene (CH), 1,3,5-trimethylbenzene (CH), phenol (CHO), cresol (CHO), 2,6-dimethylphenol (CHO), and 2,4,6-trimethylphenol (CHO) in a proportion where the aromatic VOCs were chosen to approximate day-time traffic-related emissions in Delhi, and the aromatic alcohols make up 20% of the mixture.

View Article and Find Full Text PDF
Article Synopsis
  • Source apportionment (SA) techniques, like Positive Matrix Factorization (PMF), are crucial for determining the origins of air pollutants and can help shape effective air quality strategies.
  • This study utilized a multi-time resolution (MTR) PMF approach by analyzing various air quality measurements taken over a year in Barcelona, including particulate matter and black carbon at different time intervals.
  • The MTR-PMF method identified eight distinct sources of pollution, surpassing the capabilities of traditional methods, by combining high and low time resolution data, which enhanced source differentiation and understanding of daily patterns.
View Article and Find Full Text PDF

This study presents the first long-term online measurements of submicron (PM) particles at the ATOLL (ATmospheric Observations in liLLe) platform, in northern France. The ongoing measurements using an Aerosol Chemical Speciation Monitor (ACSM) started at the end of 2016 and the analysis presented here spans through December 2020. At this site, the mean PM concentration is 10.

View Article and Find Full Text PDF

OH scavengers are extensively used in studies of secondary organic aerosol (SOA) because they create an idealized environment where only a single oxidation pathway is occurring. Here, we present a detailed molecular characterization of SOA produced from α-pinene + O with a variety of OH scavengers using the extractive electrospray time-of-flight mass spectrometer in our atmospheric simulation chamber, which is complemented by characterizing the gas phase composition in flow reactor experiments. Under our experimental conditions, radical chemistry largely controls the composition of SOA.

View Article and Find Full Text PDF

97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 μg/m). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA.

View Article and Find Full Text PDF

The first excited state of molecular oxygen is singlet-state oxygen (O), formed by indirect photochemistry of chromophoric organic matter. To determine whether O can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of O over a 1-year dataset of PM extracts at two locations in Switzerland, representing a rural and suburban site.

View Article and Find Full Text PDF

Large reductions in anthropogenic emissions during the Chinese New Year (CNY) holiday in Beijing have been well reported. However, the changes during the CNY of 2021 are different because most people stayed in Beijing to control the spread of coronavirus disease (COVID-19). Here a high-resolution aerosol mass spectrometer (HR-AMS) was deployed for characterization of the changes in size-resolved aerosol composition and sources during the CNY.

View Article and Find Full Text PDF

An increasing number of people tend to live in cities, where they suffer from serious air pollution from anthropogenic sources. Vehicle exhaust and cooking emission are closely related to daily life of urban residents, and could be defined as "urban-lifestyle sources". The primary emissions of urban-lifestyle sources tend to form abundant secondary organic aerosols (SOA) through complicated atmospheric chemistry processes.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from 22 sites across Europe from 2013-2019, using advanced techniques to identify and quantify various OA components like hydrocarbon-like OA, biomass burning OA, and cooking-like OA.
  • * The findings highlight that oxygenated OA makes up the majority of OA mass, with solid fuel combustion contributing notably, especially in winter, providing valuable data for air quality improvements.
View Article and Find Full Text PDF
Article Synopsis
  • Aerosols significantly influence the Arctic atmosphere's radiation balance, with organic aerosols being a major component that remains poorly understood.
  • Analysis from eight Arctic observatories reveals that winter organic aerosols are primarily from anthropogenic sources in Eurasia, while summer sees a shift to natural emissions like marine and biogenic aerosols.
  • The strength and effects of these aerosol sources are influenced by environmental factors like nutrient levels, solar radiation, temperature, and snow cover, providing key insights for climate impact modeling in the Arctic.
View Article and Find Full Text PDF