Publications by authors named "Andre S D Molgat"

While cell therapy is emerging as a promising option for patients with ischemic cardiomyopathy (ICM), the influence of advanced donor age and a history of ischemic injury on the reparative performance of these cells are not well defined. As such, intrinsic changes that result from advanced donor age and ischemia are explored in hopes of identifying a molecular candidate capable of restoring the lost reparative potency of heart explant-derived cells (EDCs) used in cell therapy. EDCs were cultured from myocardial biopsies obtained from young or old mice 4 weeks after randomization to experimental myocardial infarction or no intervention.

View Article and Find Full Text PDF

Background: The impact of diabetes mellitus on the cardiac regenerative potential of cardiac stem cells (CSCs) is unknown yet critical, given that individuals with diabetes mellitus may well require CSC therapy in the future. Using human and murine CSCs from diabetic cardiac tissue, we tested the hypothesis that hyperglycemic conditions impair CSC function.

Methods And Results: CSCs cultured from the cardiac biopsies of patients with diabetes mellitus (hemoglobin A1c, 10±2%) demonstrated reduced overall cell numbers compared with nondiabetic sourced biopsies (P=0.

View Article and Find Full Text PDF

Adipose tissue can be regarded as a multidepot organ responsible for metabolic homeostasis by managing sophisticated energy transactions as well as by producing bioactive molecules that regulate insulin sensitivity and immune and vascular responses. Chronic nutrient excess expands adipose tissue, and concomitant variations in its cellular and matrix remodeling can affect the extent of the metabolic dysfunction that is associated with obesity. Preadipocytes, also termed adipose progenitor cells, play a pivotal role in determining whether a dysfunctional hypertrophic state arises as opposed to a hyperplastic process in which mature adipocytes remain relatively responsive.

View Article and Find Full Text PDF

Adipose tissue contains macrophages whose state of activation is regulated as obesity develops. Macrophage-secreted factors influence critical processes involved in adipose tissue homeostasis, including preadipocyte proliferation and differentiation into adipocytes. Macrophage-conditioned medium (MacCM) from J774A.

View Article and Find Full Text PDF

Macrophage infiltration into adipose tissue, associated with obesity, is thought to contribute to abnormal adipose tissue remodeling, low-grade inflammation, and insulin resistance. Medium conditioned by macrophages (MacCM) inhibits 3T3-L1 and human adipocyte differentiation, as well as early adipogenic cell cycle events including MCE and retinoblastoma protein (Rb) phosphorylation. Our objective was to determine if the inhibition of Rb phosphorylation was linked to changes in cell cycle-related proteins.

View Article and Find Full Text PDF

Obesity is associated with adipose tissue remodeling, characterized by macrophage accumulation, adipocyte hypertrophy, and apoptosis. We previously reported that macrophage-conditioned medium (MacCM) protects preadipocytes from apoptosis, due to serum withdrawal, in a platelet-derived growth factor (PDGF)-dependent manner. We have now investigated the role of intracellular signaling pathways, activated in response to MacCM versus PDGF, in promoting preadipocyte survival.

View Article and Find Full Text PDF

This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation.

View Article and Find Full Text PDF