Background: Small variations in TMS parameters, such as pulse frequency and amplitude may elicit distinct neurophysiological responses. Assessing the mismatch between nominal and experimental parameters of TMS stimulators is essential for safe application and comparisons of results across studies.
New Method: A search coil was used to assess exactness and precision errors of amplitude and timing parameters such as interstimulus interval, the period of pulse repetition, and intertrain interval of TMS devices.
Background: Neuronavigation provides visual guidance of an instrument during procedures of neurological interventions, and has been shown to be a valuable tool for accurately positioning transcranial magnetic stimulation (TMS) coils relative to an individual's anatomy. Despite the importance of neuronavigation, its high cost, low portability, and low availability of magnetic resonance imaging facilities limit its insertion in research and clinical environments.
New Method: We have developed and validated the InVesalius Navigator as the first free, open-source software for image-guided navigated TMS, compatible with multiple tracking devices.
Previous reports on the relationship between coil orientation and amplitude of motor evoked potential (MEP) in transcranial magnetic stimulation (TMS) did not consider the effect of electrode arrangement. Here we explore this open issue by investigating whether TMS coil orientation affects the amplitude distribution of MEPs recorded from the abductor pollicis brevis (APB) muscle with a bi-dimensional grid of 61 electrodes. Moreover, we test whether conventional mono- and bipolar montages provide representative MEPs compared to those from the grid of electrodes.
View Article and Find Full Text PDFEvidence suggests that somatosensory electrical stimulation (SES) may decrease the degree of spasticity from neural drives, although there is no agreement between corticospinal modulation and the level of spasticity. Thus, stroke patients and healthy subjects were submitted to SES (3 Hz) for 30' on the impaired and dominant forearms, respectively. Motor evoked potentials induced by single-pulse transcranial magnetic stimulation were collected from two forearm muscles before and after SES.
View Article and Find Full Text PDFMotor rehabilitation of stroke survivors may include functional and/or nonfunctional strategy. The present study aimed to compare the effect of these two rehabilitation strategies by means of clinical scales and functional Magnetic Resonance Imaging (fMRI). Twelve hemiparetic chronic stroke patients were selected.
View Article and Find Full Text PDF