Publications by authors named "Andre Riedl"

We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170).

View Article and Find Full Text PDF

Recombinant adenovirus (rAd) vectors represent one of the most frequently used vehicles for gene transfer applications and . rAd genomes are constructed in where their genomes can be maintained, propagated, and modified in form of circular plasmids or bacterial artificial chromosomes. Although the rescue of rAds from their circular plasmid or bacmid forms is well established, it works with relatively low primary efficiency, preventing this technology for library applications.

View Article and Find Full Text PDF

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation.

View Article and Find Full Text PDF

Viral infections are a global disease burden with only a limited number of antiviral agents available. Due to newly emerging viral pathogens and increasing occurrence of drug resistance, there is a continuous need for additional therapeutic options, preferably with extended target range. In the present study, we describe a novel antiviral peptide with broad activity against several double-stranded DNA viruses.

View Article and Find Full Text PDF

Engineering bacterial genomes or foreign DNA cloned as bacterial artificial chromosomes (BACs) relies on usage of helper plasmids, which deliver the desired tools transiently into the bacteria to be modified. After the anticipated action is completed the helper plasmids need to be cured. To make this efficient, plasmids are used that are maintained by conditional amplicons or carry a counter-selection marker.

View Article and Find Full Text PDF

Cytomegalovirus is a DNA-encoded β-herpesvirus that induces STING-dependent type 1 interferon responses in macrophages and uses myeloid cells as a vehicle for dissemination. Here we report that STING knockout mice are as resistant to murine cytomegalovirus (MCMV) infection as wild-type controls, whereas mice with a combined Toll-like receptor/RIG-I-like receptor/STING signaling deficiency do not mount type 1 interferon responses and succumb to the infection. Although STING alone is dispensable for survival, early IFN-β induction in Kupffer cells is STING-dependent and controls early hepatic virus propagation.

View Article and Find Full Text PDF

Herpesviruses are enveloped DNA viruses that infect vertebrate cells. Their high potential cloning capacity and the lifelong persistence of their genomes in various host cells make them attractive platforms for vector-based therapy. In this review, we would like to highlight recent advances of three major areas of herpesvirus vector development and application: (i) oncolytic therapy, (ii) recombinant vaccines, and (iii) large capacity gene transfer vehicles.

View Article and Find Full Text PDF