Biocatalysis that produces economically interesting compounds can be carried out by using free enzymes or microbial cells. However, often the cell metabolism does not allow the overproduction or secretion of activated sugars and thus downstream processing of these sugars is complicated. Here enzyme immobilization comes into focus in order to stabilize the enzyme as well as to make the overall process economically feasible.
View Article and Find Full Text PDFUridine-5'-diphosphate (UDP)-glucose is reported as one of the most versatile building blocks within the metabolism of pro- and eukaryotes. The activated sugar moiety is formed by the enzyme UDP-glucose pyrophosphorylase (GalU). Two homologous enzymes (designated as GalU1 and GalU2) are encoded by most strains, known for their capability to degrade numerous compounds, but also to synthesize natural products such as trehalose comprising biosurfactants.
View Article and Find Full Text PDFIn acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced.
View Article and Find Full Text PDFEnzymes are nature's catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes.
View Article and Find Full Text PDF