Publications by authors named "Andre Pires Cunha"

Article Synopsis
  • Oral administration of antigens (Ag) triggers regulatory T cells that carry latent TGF-β, crucial for oral tolerance development.
  • An in vitro study showed that specific antibodies and IL-2 can promote latent membrane-bound TGF-β expression on naive CD4 T cells without needing Foxp3 or external TGF-β.
  • Pro-inflammatory cytokines like IL-6 hinder the induction of these regulatory T cells, suggesting that targeting the IL-6 pathway might improve oral tolerance and help manage autoimmune conditions.
View Article and Find Full Text PDF

CD3-specific monoclonal antibody (mAb) treats autoimmune disease in animal models and has shown promise in clinical trials of type 1 diabetes. Whereas intravenous administration of CD3-specific mAb acts primarily by transient depletion of activated effector T cells, oral CD3-specific mAb acts primarily by the induction Tregs. We investigated whether oral CD3-specific mAb inhibits disease in non obese diabetic (NOD) mice that spontaneously develop autoimmune diabetes, closely resembling human type 1 diabetes.

View Article and Find Full Text PDF

The host gut microbiota varies across species and individuals but is relatively stable over time within an individual. How the host selectively shapes the microbiota is largely unclear. Here, we show that fecal microRNA (miRNA)-mediated inter-species gene regulation facilitates host control of the gut microbiota.

View Article and Find Full Text PDF

Accumulation of IL-17-producing Th17 cells is associated with the development of multiple autoimmune diseases; however, the contribution of microRNA (miRNA) pathways to the intrinsic control of Th17 development remains unclear. Here, we demonstrated that miR-21 expression is elevated in Th17 cells and that mice lacking miR-21 have a defect in Th17 differentiation and are resistant to experimental autoimmune encephalomyelitis (EAE). Furthermore, we determined that miR-21 promotes Th17 differentiation by targeting and depleting SMAD-7, a negative regulator of TGF-β signaling.

View Article and Find Full Text PDF

Oral tolerance is defined as an inhibition of specific immune responsiveness to a previously ingested antigen. Paradoxically, we found an increased lymphocyte activity in tolerant mice alongside the specific inhibition. Orally-tolerant mice presented higher number of immunoglobulin secreting cells (ISC) in spleen and bone marrow; showed a greater variety of Ig classes being produced: IgM and IgA in the spleen and IgG and IgM in the bone marrow.

View Article and Find Full Text PDF

Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse.

View Article and Find Full Text PDF

In recent years, our knowledge about immunoregulation and autoimmunity has significantly advanced, but nontoxic and more effective treatments for different inflammatory and autoimmune diseases are still lacking. Oral tolerance is of unique immunologic importance because it is a continuous natural immunologic event driven by exogenous antigen and is an attractive approach for treatment of these conditions. Parenteral administration of anti-CD3 monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes.

View Article and Find Full Text PDF

Background: Type 1 regulatory T (Tr1) cells, characterized by the secretion of high levels of the anti-inflammatory cytokine interleukin-10 (IL-10), play an important role in the regulation of autoimmune diseases and transplantation. However, effective strategies that specifically induce Tr1 cells in vivo are limited. Furthermore, the pathways controlling the induction of these cells in vivo are not well understood.

View Article and Find Full Text PDF

The gut-associated lymphoid tissue is the largest immune organ in the body and is the primary route by which we are exposed to antigens. Tolerance induction is the default immune pathway in the gut, and the type of tolerance induced relates to the dose of antigen fed: anergy/deletion (high dose) or regulatory T-cell (Treg) induction (low dose). Conditioning of gut dendritic cells (DCs) by gut epithelial cells and the gut flora, which itself has a major influence on gut immunity, induces CD103(+) retinoic acid-dependent DC that induces Tregs.

View Article and Find Full Text PDF

Parenteral exposure to antigens to which oral tolerance had been previously induced results in the inhibition of immune responses to other unrelated antigens. Herein we tested whether indirect effects of oral tolerance could be adoptively transferred. Anti-Ova- and antihemoglobin-specific responsiveness as well as oral tolernace to Ova were transferred to irradiated, but not to normal, nonirradiated recepients.

View Article and Find Full Text PDF