The transcription factor ThPOK (encoded by Zbtb7b) is well known for its role as a master regulator of CD4 lineage commitment in the thymus. Here, we report an unexpected and critical role of ThPOK as a multifaceted regulator of myeloid lineage commitment, differentiation and maturation. Using reporter and knockout mouse models combined with single-cell RNA-sequencing, progenitor transfer and colony assays, we show that ThPOK controls monocyte-dendritic cell versus granulocyte lineage production during homeostatic differentiation, and serves as a brake for neutrophil maturation in granulocyte lineage-specified cells through transcriptional regulation of lineage-specific transcription factors and RNA via altered messenger RNA splicing to reprogram intron retention.
View Article and Find Full Text PDFThe erythroblastic island (EBI), composed of a central macrophage surrounded by maturing erythroblasts, is the erythroid precursor niche. Despite numerous studies, its precise composition is still unclear. Using multispectral imaging flow cytometry, in vitro island reconstitution, and single-cell RNA sequencing of adult mouse bone marrow (BM) EBI-component cells enriched by gradient sedimentation, we present evidence that the CD11b+ cells present in the EBIs are neutrophil precursors specifically associated with BM EBI macrophages, indicating that erythro-(myelo)-blastic islands are a site for terminal granulopoiesis and erythropoiesis.
View Article and Find Full Text PDFIn contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function.
View Article and Find Full Text PDFGranulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1.
View Article and Find Full Text PDFAdvances in genetics and sequencing have identified a plethora of disease-associated and disease-causing genetic alterations. To determine causality between genetics and disease, accurate models for molecular dissection are required; however, the rapid expansion of transcriptional populations identified through single-cell analyses presents a major challenge for accurate comparisons between mutant and wild-type cells. Here we generate mouse models of human severe congenital neutropenia (SCN) using patient-derived mutations in the GFI1 transcription factor.
View Article and Find Full Text PDFAging is associated with functional decline of hematopoietic stem cells (HSC) as well as an increased risk of myeloid malignancies. We performed an integrative characterization of epigenomic and transcriptomic changes, including single-cell RNA sequencing, during normal human aging. LineageCD34CD38 cells [HSC-enriched (HSCe)] undergo age-associated epigenetic reprogramming consisting of redistribution of DNA methylation and reductions in H3K27ac, H3K4me1, and H3K4me3.
View Article and Find Full Text PDFIn this Letter, the first name of author Virendra K. Chaudhri was incorrectly spelled 'Viren'; author Meenakshi Venkatasubramanian should also be associated with 'Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, USA'; authors Bruce J. Aronow, Nathan Salomonis, Harinder Singh and H.
View Article and Find Full Text PDF(), encoding a histone methyltransferase, is associated with many hematopoietic diseases when mutated. By generating a novel exon 6 conditional knockout mouse model, we describe an essential role of in maintaining the adult hematopoietic stem cells. Loss of results in leukopenia, anemia, and increased platelets accompanied by hypocellularity, erythroid dysplasia, and mild fibrosis in bone marrow.
View Article and Find Full Text PDFThe advent of facile genome engineering technologies has made the generation of knock-in gene-expression or fusion-protein reporters more tractable. Fluorescent protein labeling of specific genes combined with surface marker profiling can more specifically identify a cell population. However, the question of which fluorescent proteins to utilize to generate reporter constructs is made difficult by the number of candidate proteins and the lack of updated experimental data on newer fluorescent proteins.
View Article and Find Full Text PDFGranulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) produce monocytes during homeostasis and in response to increased demand during infection. Both progenitor populations are thought to derive from common myeloid progenitors (CMPs), and a hierarchical relationship (CMP-GMP-MDP-monocyte) is presumed to underlie monocyte differentiation. Here, however, we demonstrate that mouse MDPs arose from CMPs independently of GMPs, and that GMPs and MDPs produced monocytes via similar but distinct monocyte-committed progenitors.
View Article and Find Full Text PDFDelineating hierarchical cellular states, including rare intermediates and the networks of regulatory genes that orchestrate cell-type specification, are continuing challenges for developmental biology. Single-cell RNA sequencing is greatly accelerating such research, given its power to provide comprehensive descriptions of genomic states and their presumptive regulators. Haematopoietic multipotential progenitor cells, as well as bipotential intermediates, manifest mixed-lineage patterns of gene expression at a single-cell level.
View Article and Find Full Text PDFGrowth factor independent 1 (Gfi1) is a transcriptional repressor originally identified as a gene activated in T-cell leukemias induced by Moloney-murine-leukemia virus infection. Notch1 is a transmembrane receptor that is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL). Gfi1 is an important factor in the initiation and maintenance of lymphoid leukemias and its deficiency significantly impedes Notch dependent initiation of T-ALL in animal models.
View Article and Find Full Text PDFRUNX1 is generally considered a tumor suppressor in myeloid neoplasms. Inactivating RUNX1 mutations have frequently been found in patients with myelodysplastic syndrome (MDS) and cytogenetically normal acute myeloid leukemia (AML). However, no somatic RUNX1 alteration was found in AMLs with leukemogenic fusion proteins, such as core-binding factor (CBF) leukemia and MLL fusion leukemia, raising the possibility that RUNX1 could actually promote the growth of these leukemia cells.
View Article and Find Full Text PDFHypoxia is emerging as an important characteristic of the hematopoietic stem cell (HSC) niche, but the molecular mechanisms contributing to quiescence, self-renewal, and survival remain elusive. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis and hematopoiesis. Its expression is commonly regulated by hypoxia-inducible factors (HIF) that are functionally induced in low-oxygen conditions and that activate transcription by binding to hypoxia-response elements (HRE).
View Article and Find Full Text PDFThe leukaemia-associated eight-twenty-one (ETO) family members ETO, MTG16 (Myeloid Translocation Gene on chromosome 16) and MTGR1 (Myeloid Transforming Gene-Related protein1) are putative transcriptional repressor proteins, which form complexes with coregulatory nuclear corepressors such as SIN3 (SWI-Independent) and N-CoR (Nuclear receptor Co Repressor). In acute myeloid leukaemia (AML), fusion proteins involving the transcription factor AML1 and corepressors ETO or MTG16 are recurrently found. We investigated transcriptional repression by the ETO family members ETO and MTG16 with attention to the conserved Nervy Homology Regions (NHRs) and the interacting corepressors human SIN3B (hSIN3B) and N-CoR.
View Article and Find Full Text PDFThe Eight twenty-one (ETO) homologues are nuclear repressor proteins including ETO, myeloid-transforming gene-related protein 1 (MTGR1), and myeloid-transforming gene chromosome 16 (MTG16). ETO and MTG16 are both part of fusion proteins resulting from chromosomal translocations associated with acute myeloid leukemia. Expression of these chimeras results in a differentiation block that contributes to the onset of leukemia.
View Article and Find Full Text PDFThe eight-twenty-one (ETO) homologues, represented by ETO, myeloid transforming gene-related protein 1 (MTGR1) and myeloid transforming gene chromosome 16 (MTG16), are nuclear repressor proteins. ETO is part of the fusion protein acute myeloid leukaemia (AML)1-ETO, resulting from the translocation (8;21). Similarly, MTG16 is disrupted to become part of AML1/MTG16 in t(16;21).
View Article and Find Full Text PDF