Poly(dimethylsiloxane) (PDMS) elastomer coatings containing an amphiphilic hydrolyzable diblock copolymer additive were prepared and their potential as marine antifouling and antiadhesion materials was tested. The block copolymer additive consisted of a PDMS first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)--poly(ethyleneglycol) methacrylate (PEGMA) copolymer second block. PDMS--TRSiMA block copolymer additives without PEGMA units were also used as additives.
View Article and Find Full Text PDF3D printing technology is increasingly used in flow analysis, to develop low cost and tailor-made devices. The possibility of grafting specific molecules onto 3D printed parts offers new perspectives for the development of flow systems. In this study, a MPFS system including a dicarboxylate 1,5-diphenyl-3-thiocarbazone grafted 3D-printed device has been developed for mercury determination.
View Article and Find Full Text PDFFouling Release Coatings are marine antifouling coatings based on silicone elastomers. Contrary to commonly used biocide-based antifouling coatings, they do not release biocides into the marine environment, however, they suffer from poor antifouling efficacy during idle periods. To improve their antifouling performances in static conditions, various amounts of hydrolyzable polymers were incorporated within a silicone matrix.
View Article and Find Full Text PDFIn recent years, the development of 3D printing in flow analysis has allowed the creation of new systems with various applications. Up to now, 3D printing was mainly used for the manufacture of small units such as flow detection cells, preconcentration units or mixing systems. In the present study, a new 3D printed lab-on-valve system was developed to selectively quantify lead and cadmium in water.
View Article and Find Full Text PDFWell-defined poly(-butyldimethylsilyl methacrylate)s (TBDMSMA) were prepared by the reversible addition-fragmentation chain transfer (RAFT) process using cyanoisopropyl dithiobenzoate (CPDB) as chain-transfer agents (CTA). The experimentally obtained molecular weight distributions are narrow and shift linearly with monomer conversion. Propagation rate coefficients () and termination rate coefficients () for free radical polymerization of TBDMSMA have been determined for a range of temperature between 50 and 80 °C using the pulsed laser polymerization-size-exclusion chromatography (PLP-SEC) method and the kinetic method via steady-state rate measurement, respectively.
View Article and Find Full Text PDFThe development of 3D printing in recent years opens up a vast array of possibilities in the field of flow analysis. In the present study, a new 3D-printed flow system has been developed for the selective spectrophotometric determination of lead in natural waters. This system was composed of three 3D-printed units (sample treatment, mixing coil and detection) that might have been assembled without any tubing to form a complete flow system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2015
Di- and triblock copolymers based on tert-butyldimethylsilyl methacrylate (MASi) and poly(dimethylsiloxane) (PDMS) macro-RAFT agents were synthesized resulting in copolymers with predictable molar masses and low dispersities (Đ < 1.2). The block copolymers exhibited two glass transition temperatures, corresponding to the PDMS- and poly(tert-butyldimethylsilyl methacrylate) (PMASi)-enriched phases, respectively.
View Article and Find Full Text PDFIn this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70°C for 24h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, (13)C, (29)Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface.
View Article and Find Full Text PDFThree novel Ni(II)-Ion-Imprinted Polymer (IIP) were synthesized by precipitation polymerization of ethylene glycol dimethacrylate (crosslinker) with a complex of nickel(II) and vinylbenzyl iminodiacetic acid (VbIDA). The three IIPs were prepared with various mixtures of porogen solvents: methanol, methanol/2-methoxyethanol and methanol/acetonitrile (IIP1, IIP2 and IIP3, respectively). Non-Imprinted Polymers (NIP1, NIP2 and NIP3) were prepared as control polymers in similar conditions but with pure VbIDA instead of VbIDA-Ni.
View Article and Find Full Text PDFIon-imprinted polymer beads are prepared for the first time by inverse suspension polymerization in mineral oil using nickel(II) as the template ion. As water is not used as the continuous phase, this new route of synthesis avoids the risk that the ion template leaves the suspension for the aqueous phase. The leaching of nickel from the resin beads is very good due to the large porosity of the polymer beads.
View Article and Find Full Text PDFFunctionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.
View Article and Find Full Text PDFA new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step).
View Article and Find Full Text PDF