Publications by authors named "Andre Malassine"

We have recently shown, using a well-defined in vitro model, that connexin 43 (Cx43) is directly involved in human cytotrophoblastic cell fusion into a multinucleated syncytiotrophoblast. Cx43 appears to interact with partner proteins within a fusogenic complex, in a multi factorial and dynamic process. This fusogenic complex remains to be characterized and constituent proteins need to be identified.

View Article and Find Full Text PDF

Trophoblastic cell fusion is one essential step of the human trophoblast differentiation leading to formation of the syncytiotrophoblast, site of the numerous placental functions. This process is multifactorial and finely regulated. Using the physiological model of primary culture of trophoblastic cells isolated from human placenta, we have identified different membrane proteins directly involved in trophoblastic cell fusion: connexin 43, ZO-1 and recently syncytins.

View Article and Find Full Text PDF

Trophoblastic cell-cell fusion is an essential event required during human placental development. Several membrane proteins have been described to be directly involved in this process, including connexin 43 (Cx43), syncytin 1 (Herv-W env), and syncytin 2 (Herv-FRD env glycoprotein). Recently, zona occludens (ZO) proteins (peripheral membrane proteins associated with tight junctions, adherens junctions, and gap junctions) were shown to be involved in mouse placental development.

View Article and Find Full Text PDF

The human placenta is characterized by the intensity of the trophoblast invasion into the uterus wall and the specificity of its hormonal functions. Placental hormones are required for the establishment and maintenance of pregnancy, adaptation of the maternal organism to pregnancy and fetal growth. In the early placenta at the maternofetal interface, the human trophoblast differentiates along two pathways: 1/ the villous trophoblast pathway including the cytotrophoblastic cells which differentiate by fusion to form the syncytiotrophoblast that covers the entire surface of the villi; 2/ the extravillous trophoblast pathway.

View Article and Find Full Text PDF

Trophoblastic cell fusion is one essential step of the human trophoblast differentiation pathway and is a multifactorial and dynamic process finely regulated and still poorly known. Disturbances of syncytiotrophoblast formation are observed in numerous pathological clinical conditions such as preeclampsia, intrauterine growth retardation and trisomy 21. In this review, we summarize current knowledge of the different membrane proteins directly involved in trophoblastic cell fusion, which we identified by using the physiological model of primary culture of villous trophoblastic cells.

View Article and Find Full Text PDF

Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT).

View Article and Find Full Text PDF
Article Synopsis
  • Gap junctional intercellular communication regulates cell growth and differentiation, with connexin33 inhibiting this communication when injected into Xenopus oocytes.
  • Connexin33 is exclusively expressed in the seminiferous tubules of the testis and is unphosphorylated, unlike other connexins.
  • It physically interacts with connexin43, sequestering the complex in early endosomes, leading to impaired communication between cells and suggesting connexin33 may play a role in regulating germ cell proliferation.
View Article and Find Full Text PDF

The placenta is a unique, autonomous and transient organ. It ensures maternal-fetal exchanges and is also involved in maternal tolerance of feto-paternal antigens. The human placenta is characterized by the major invasion of the trophoblast, which comes in contact with the maternal blood, and by the intensity and the specificity of its endocrine functions.

View Article and Find Full Text PDF

The syncytiotrophoblast is the principal component of the human placenta involved in feto-maternal exchanges and hormone secretion. The syncytiotrophoblast arises from the fusion of villous cytotrophoblasts. We recently showed that functional gap junctional intercellular communication (GJIC) is an important prerequisite for syncytiotrophoblast formation and that connexin 43 (Cx43) is present in cytotrophoblasts and in the syncytiotrophoblast.

View Article and Find Full Text PDF
Article Synopsis
  • The villous trophoblast undergoes a fusion process during pregnancy, transforming cytotrophoblastic cells into syncytiotrophoblasts, which are vital for placenta functions.
  • Connexin43 (Cx43) plays a crucial role in facilitating gap junctional intercellular communication (GJIC) between these cells, influencing their differentiation.
  • Disruption of GJIC with a gap junction uncoupler, heptanol, leads to poor cell fusion and reduced expression of trophoblast-specific genes, although this effect is reversible once the uncoupler is removed.
View Article and Find Full Text PDF

The human Cx40 gene (NT_004434.5) was sorted out from the GenBank database and as a result of a BLAST homology search, two ESTs (BE784549 from a human lung database, and BE732411 from a human placenta database) overlapping with the coding exon 2 sequence and upstream regions of the gene were identified. These ESTs correspond to two transcripts 1A and 1B, which diverge from each other in their 5' regions.

View Article and Find Full Text PDF

In the human, fetal cytotrophoblastic cells play a key role in the implantation process and in placental development. With the progression of placentation, two pathways of differentiation lead to the formation of two distinct phenotypes. In the villous trophoblast (fusion phenotype), the trophblast differentiates from the fusion of mononuclear cytotrophoblastic cells into a syncytium, the syncytiotrophoblast.

View Article and Find Full Text PDF