This article describes the chemical synthesis, ADME and pharmacological properties and early safety pharmacology evaluation of a series of novel Nurr1/NOT agonist. It is meant as a support to an article recently published in Bioorganic and Medicinal chemistry Letters and entitled "Development of a novel NURR1/NOT agonist from hit to lead and candidate for the potential treatment of Parkinson's disease" [1] and presenting the discovery, scope and potential of these new ligands of these nuclear receptors.
View Article and Find Full Text PDFIn the course of a programme aimed at identifying Nurr1/NOT agonists for potential treatment of Parkinson's disease, a few hits from high throughput screening were identified and characterized. A combined optimization pointed to a very narrow and stringent structure activity relationship. A comprehensive program of optimization led to a potent and safe candidate drug displaying neuroprotective and anti-inflammatory activity in several in vitro and in vivo models.
View Article and Find Full Text PDFDeacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by LpxC is the first committed step in the Pseudomonas aeruginosa biosynthetic pathway to lipid A; homologous enzymes are found widely among Gram-negative bacteria. As an essential enzyme for which no inhibitors have yet been reported, the P. aeruginosa LpxC represents a highly attractive target for a novel antibacterial drug.
View Article and Find Full Text PDF