Evidence accumulation models of simple decision-making have long assumed that the brain estimates a scalar decision variable corresponding to the log-likelihood ratio of the two alternatives. Typical neural implementations of this algorithmic cognitive model assume that large numbers of neurons are each noisy exemplars of the scalar decision variable. Here we propose a neural implementation of the diffusion model in which many neurons construct and maintain the Laplace transform of the distance to each of the decision bounds.
View Article and Find Full Text PDFComputational models of classical conditioning have made significant contributions to the theoretic understanding of associative learning, yet they still struggle when the temporal aspects of conditioning are taken into account. Interval timing models have contributed a rich variety of time representations and provided accurate predictions for the timing of responses, but they usually have little to say about associative learning. In this article we present a unified model of conditioning and timing that is based on the influential Rescorla-Wagner conditioning model and the more recently developed Timing Drift-Diffusion model.
View Article and Find Full Text PDFAddiction is the continuation of a habit in spite of negative consequences. A vast literature gives evidence that this poor decision-making behavior in individuals addicted to drugs also generalizes to laboratory decision making tasks, suggesting that the impairment in decision-making is not limited to decisions about taking drugs. In the current experiment, opioid-addicted individuals and matched controls with no history of illicit drug use were administered a probabilistic classification task that embeds both reward-based and punishment-based learning trials, and a computational model of decision making was applied to understand the mechanisms describing individuals' performance on the task.
View Article and Find Full Text PDFAnimals readily learn the timing between salient events. They can even adapt their timed responding to rapidly changing intervals, sometimes as quickly as a single trial. Recently, drift-diffusion models-widely used to model response times in decision making-have been extended with new learning rules that allow them to accommodate steady-state interval timing, including scalar timing and timescale invariance.
View Article and Find Full Text PDF