The amplitude of a two-dimensional Ornstein-Uhlenbeck colored noise process evolves according to the one-dimensional Rayleigh process. This is a general model for the random amplitude fluctuations of a quasicycle, i.e.
View Article and Find Full Text PDFAnimals navigate by learning the spatial layout of their environment. We investigated spatial learning of mice in an open maze where food was hidden in one of a hundred holes. Mice leaving from a stable entrance learned to efficiently navigate to the food without the need for landmarks.
View Article and Find Full Text PDFTime delays play a significant role in dynamical systems, as they affect their transient behavior and the dimensionality of their attractors. The number, values, and spacing of these time delays influences the eigenvalues of a nonlinear delay-differential system at its fixed point. Here we explore a multidelay system as the core computational element of a reservoir computer making predictions on its input in the usual regime close to fixed point instability.
View Article and Find Full Text PDFIn a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution.
View Article and Find Full Text PDFComplex living systems, such as the human organism, are characterized by their self-organized and dissipative behaviors, where irreversible processes continuously produce entropy internally and export it to the environment; however, a means by which to measure human entropy production and entropy flow over time is not well-studied. In this article, we leverage prior experimental data to introduce an experimental approach for the continuous measurement of external entropy flow (released to the environment) and internal entropy production (within the body), using direct and indirect calorimetry, respectively, for humans exercising under heat stress. Direct calorimetry, performed with a whole-body modified Snellen calorimeter, was used to measure the external heat dissipation from the change in temperature and relative humidity between the air outflow and inflow, from which was derived the rates of entropy flow of the body.
View Article and Find Full Text PDFHilar mossy cells (hMCs) in the dentate gyrus (DG) receive inputs from DG granule cells (GCs), CA3 pyramidal cells and inhibitory interneurons, and provide feedback input to GCs. Behavioural and in vivo recording experiments implicate hMCs in pattern separation, navigation and spatial learning. Our experiments link hMC intrinsic excitability to their synaptically evoked in vivo spiking outputs.
View Article and Find Full Text PDFBy means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons.
View Article and Find Full Text PDFMounting evidence in recent years suggests that astrocytes, a sub-type of glial cells, not only serve metabolic and structural support for neurons and synapses but also play critical roles in the regulation of proper functioning of the nervous system. In this work, we investigate the effect of astrocytes on the spontaneous firing activity of a neuron through a combined model that includes a neuron-astrocyte pair. First, we show that an astrocyte may provide a kind of multistability in neuron dynamics by inducing different firing modes such as random and bursty spiking.
View Article and Find Full Text PDFWe elucidate how coupling delays and noise impact phase and mutual information relationships between two stochastic brain rhythms. This impact depends on the dynamical regime of each PING-based rhythm, as well as on network heterogeneity and coupling asymmetry. The number of peaks at positive and negative time lags in the delayed mutual information between the two bi-directionally communicating rhythms defines our measure of flexibility of information sharing and reflects the number of ways in which the two networks can alternately lead one another.
View Article and Find Full Text PDFUnlabelled: Human brain imaging has revealed that stimulus-induced activity does generally not simply add to the pre-stimulus activity, but rather builds in a non-additive way on this activity. Here we investigate this subject at the single neuron level and address the question whether and to what extent a strong form of non-additivity where activity drops post-cue is present in different areas of monkey cortex, including prefrontal and agranular frontal areas, during a perceptual decision making task involving action and tactic selection. Specifically we analyze spike train data recorded in vivo from the posterior dorsomedial prefrontal cortex (pmPFC), the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA).
View Article and Find Full Text PDFFront Syst Neurosci
November 2021
Neural circuits operate with delays over a range of time scales, from a few milliseconds in recurrent local circuitry to tens of milliseconds or more for communication between populations. Modeling usually incorporates single fixed delays, meant to represent the mean conduction delay between neurons making up the circuit. We explore conditions under which the inclusion of more delays in a high-dimensional chaotic neural network leads to a reduction in dynamical complexity, a phenomenon recently described as multi-delay complexity collapse (CC) in delay-differential equations with one to three variables.
View Article and Find Full Text PDFHigh-level neural activity often exhibits mixed selectivity to multivariate signals. How such representations arise and modulate natural behavior is poorly understood. We addressed this question in weakly electric fish, whose social behavior is relatively low dimensional and can be easily reproduced in the laboratory.
View Article and Find Full Text PDFWe investigate transitions to simple dynamics in first-order nonlinear differential equations with multiple delays. With a proper choice of parameters, a single delay can destabilize a fixed point. In contrast, multiple delays can both destabilize fixed points and promote high-dimensional chaos but also induce stabilization onto simpler dynamics.
View Article and Find Full Text PDFBrain areas must be able to interact and share information in a time-varying, dynamic manner on a fast timescale. Such flexibility in information sharing has been linked to the synchronization of rhythm phases between areas. One definition of flexibility is the number of local maxima in the delayed mutual information curve between two connected areas.
View Article and Find Full Text PDFNeural responses to the same stimulus show significant variability over trials, with this variability typically reduced (quenched) after a stimulus is presented. This trial-to-trial variability (TTV) has been much studied, however how this neural variability quenching is influenced by the ongoing dynamics of the prestimulus period is unknown. Utilizing a human intracranial stereo-electroencephalography (sEEG) data set, we investigate how prestimulus dynamics, as operationalized by standard deviation (SD), shapes poststimulus activity through trial-to-trial variability (TTV).
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2021
Recent findings have revealed that not only neurons but also astrocytes, a special type of glial cells, are major players of neuronal information processing. It is now widely accepted that they contribute to the regulation of their microenvironment by cross-talking with neurons via gliotransmitters. In this context, we here study the phenomenon of vibrational resonance in neurons by considering their interaction with astrocytes.
View Article and Find Full Text PDFMany healthy and pathological brain rhythms, including beta and gamma rhythms and essential tremor, are suspected to be induced by noise. This yields randomly occurring, brief epochs of higher amplitude oscillatory activity known as "bursts," the statistics of which are important for proper neural function. Here, we consider a more realistic model with both multiplicative and additive noise instead of only additive noise, to understand how state-dependent fluctuations further affect rhythm induction.
View Article and Find Full Text PDFNeural Comput
February 2021
Spike trains with negative interspike interval (ISI) correlations, in which long/short ISIs are more likely followed by short/long ISIs, are common in many neurons. They can be described by stochastic models with a spike-triggered adaptation variable. We analyze a phenomenon in these models where such statistically dependent ISI sequences arise in tandem with quasi-statistically independent and identically distributed (quasi-IID) adaptation variable sequences.
View Article and Find Full Text PDFUnderstanding how rich dynamics emerge in neural populations requires models exhibiting a wide range of behaviors while remaining interpretable in terms of connectivity and single-neuron dynamics. However, it has been challenging to fit such mechanistic spiking networks at the single-neuron scale to empirical population data. To close this gap, we propose to fit such data at a mesoscale, using a mechanistic but low-dimensional and, hence, statistically tractable model.
View Article and Find Full Text PDFFollowing publication of the original article (Naud and Longtin in J Math Neurosci 9:3, 2019), the authors noticed a mistake in the first paragraph within "Altered propagation".
View Article and Find Full Text PDFBrain rhythms recorded in vivo, such as gamma oscillations, are notoriously variable both in amplitude and frequency. They are characterized by transient epochs of higher amplitude known as bursts. It has been suggested that, despite their short-life and random occurrence, bursts in gamma and other rhythms can efficiently contribute to working memory or communication tasks.
View Article and Find Full Text PDFProperties of synaptic release dictates the core of information transfer in neural circuits. Despite decades of technical and theoretical advances, distinguishing bona fide information content from the multiple sources of synaptic variability remains a challenging problem. Here, we employed a combination of computational approaches with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging at single synapses.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors noticed a mistake in the first paragraph within "Altered propagation".
View Article and Find Full Text PDFFront Integr Neurosci
July 2019
Active sensory systems have evolved to properly encode natural stimuli including those created by conspecifics, yet little is known about the properties of such stimuli. We consider the electrosensory signal at the skin of a fixed weakly electric fish in the presence of a swimming conspecific. The dipole recordings are obtained in parallel with video tracking of the position of the animals.
View Article and Find Full Text PDF