Publications by authors named "Andre Laschewsky"

Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability.

View Article and Find Full Text PDF

The fouling resistance of zwitterionic coatings is conventionally explained by the strong hydrophilicity of such polymers. Here, the biocompatibility of a set of systematically varied amphiphilic, zwitterionic copolymers is investigated. Photocrosslinkable, amphiphilic copolymers containing hydrophilic sulfobetaine methacrylate (SPe) and butyl methacrylate (BMA) were systematically synthesized in different ratios (50:50, 70:30, and 90:10) with a fixed content of photo-crosslinker by free radical copolymerization.

View Article and Find Full Text PDF

We investigate the collective dynamics of thermoresponsive polymer poly(-isopropylmethacrylamide) (PNIPMAM) in aqueous solution and in water/methanol mixtures in the one-phase region. In neat water, the polymer concentration is varied in a wide range around the overlap concentration *, that is estimated at 23 g L. Using dynamic light scattering (DLS), two decays ("modes") are consistently observed in the intensity autocorrelation functions for = 2-150 g L with relaxation rates which are proportional to the square of the momentum transfer.

View Article and Find Full Text PDF

Dual thermo- and light-responsive water-soluble copolymers that respond to exclusively non-invasive triggers are obtained by functionalising poly(,-dimethylacrylamide) with arylazopyrazole side chains. The light-induced - (-) photo isomerisation of these dyes provides an exceptionally effective photo-switch, which can reversibly shift the LCST-type phase transition temperatures by almost 25 K.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied special mixtures called oil-in-water microemulsions that can change how thick or watery they are when the temperature changes.
  • They added special materials called thermoresponsive block copolymers that can create a ‘network’ as it gets warmer, which can make the mixtures thicker instead of thinner.
  • By using different types of these copolymers, they found that some can increase thickness a lot at higher temperatures, which could be really useful for carrying certain things like oils in special applications.
View Article and Find Full Text PDF

Polyzwitterions are generally known for their anti-adhesive properties, including resistance to protein and cell adhesion, and overall high bio-inertness. Yet there are a few polyzwitterions to which mammalian cells do adhere. To understand the structural features of this behavior, a panel of polyzwitterions with different functional groups and overall degrees of hydrophobicity is analyzed here, and their physical and biological properties are correlated to these structural differences.

View Article and Find Full Text PDF

The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (HO or DO), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (HO or DO/acetone-d6 = 9:1 v/v).

View Article and Find Full Text PDF

A nonionic double hydrophilic block copolymer with a long permanently hydrophilic and a small thermoresponsive block is synthesized by reversible addition-fragmentation chain-transfer polymerization (RAFT). By employing a specifically designed chain-transfer agent, the polymer is functionalized with complementary end groups which are suited for Förster resonance energy transfer (FRET). The end group attached to the permanently hydrophilic block of poly(,-dimethylacrylamide) pDMAm is designed as a permanently hydrophobic segment ("sticker") comprising a long alkyl chain and the 4-aminonaphthalimide fluorophore.

View Article and Find Full Text PDF

Amphiphilic polymer coatings combining hydrophilic elements, in particular zwitterionic groups, and hydrophobic elements comprise a promising strategy to decrease biofouling. However, the influence of the content of the hydrophobic component in zwitterionic coatings on the interfacial molecular reorganization dynamics and the anti-fouling performance is not well understood. Therefore, coatings of amphiphilic copolymers of sulfobetaine methacrylate 3-[N-2'-(methacryloyloxy)ethyl-N,N-dimethyl]-ammonio propane-1-sulfonate (SPE) are prepared which contain increasing amounts of hydrophobic n-butyl methacrylate (BMA).

View Article and Find Full Text PDF

The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(-(3'-methacrylamidopropyl)-,-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature.

View Article and Find Full Text PDF

Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone.

View Article and Find Full Text PDF

While zwitterionic interfaces are known for their excellent low-fouling properties, the underlying molecular principles are still under debate. In particular, the role of the zwitterion orientation at the interface has been discussed recently. For elucidation of the effect of this parameter, self-assembled monolayers (SAMs) on gold were prepared from stoichiometric mixtures of oppositely charged alkyl thiols bearing either a quaternary ammonium or a carboxylate moiety.

View Article and Find Full Text PDF

Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[-(2-methacryloyloxyethyl)-,dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains.

View Article and Find Full Text PDF

The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how different types of surfactants, specifically oligomeric ones, interact with calf thymus DNA (ctDNA) and how varying their structures affects this interaction.
  • It highlights that dimeric surfactants are particularly effective in changing the nucleic acid's charge and provides insights into how the arrangement of positive charges and hydrophobic tails in surfactants influences ctDNA condensation.
  • The findings suggest that designing better cationic surfactants could enhance their use as non-viral gene therapy vectors.
View Article and Find Full Text PDF

This feature article reviews our recent advancements on the synthesis, phase behavior, and micellar structures of diblock copolymers consisting of oppositely thermoresponsive blocks in aqueous environments. These copolymers combine a nonionic block, which shows lower critical solution temperature (LCST) behavior, with a zwitterionic block that exhibits an upper critical solution temperature (UCST). The transition temperature of the latter class of polymers is strongly controlled by its molar mass and by the salt concentration, in contrast to the rather invariant transition of nonionic polymers with type II LCST behavior such as poly(-isopropylacrylamide) or poly(-isopropyl methacrylamide).

View Article and Find Full Text PDF

Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s.

View Article and Find Full Text PDF

Thermoresponsive films of poly( N-isopropyl methacrylamide) (PNIPMAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA) are compared with respect to their hydration and dehydration kinetics using in situ neutron reflectivity. Both as-prepared films present a homogeneous single-layer structure and have similar transition temperatures of the lower critical solution temperature type (TT, PNIPMAM 38 °C and PMDEGA 41 °C). After hydration in unsaturated DO vapor at 23 °C, a DO enrichment layer is observed in PNIPMAM films adjacent to the Si substrate.

View Article and Find Full Text PDF

Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment.

View Article and Find Full Text PDF

Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly( N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition.

View Article and Find Full Text PDF

The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(-2-methacryloylethyl--dimethyl) ammoniopropanesulfonate) ("sulfobetaine methacrylate"), and poly(3-(-3-methacryamidopropyl--dimethyl)ammoniopropanesulfonate) ("sulfobetaine methacrylamide") as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable.

View Article and Find Full Text PDF

Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST) in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol) (PEG) macroinitiator via atom transfer radical polymerization (ATRP) of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and ¹H NMR spectroscopy.

View Article and Find Full Text PDF

The readily available cellulose-derived bicyclic compound levoglucosenol was polymerized through ring-opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass-derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High-molar-mass polyacetals with apparent weight-average molar masses of up to 100 kg mol and dispersities of approximately 2 were produced despite the non-living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 °C.

View Article and Find Full Text PDF

Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity.

View Article and Find Full Text PDF

The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS) films show a transition temperature (TT) at 33 °C in white light interferometry.

View Article and Find Full Text PDF