Background: Complex diseases such as neurodevelopmental disorders (NDDs) exhibit multiple etiologies. The multi-etiological nature of complex-diseases emerges from distinct but functionally similar group of genes. Different diseases sharing genes of such groups show related clinical outcomes that further restrict our understanding of disease mechanisms, thus, limiting the applications of personalized medicine approaches to complex genetic disorders.
View Article and Find Full Text PDFMotivation: Despite recent advancements in sequencing technologies and assembly methods, obtaining high-quality microbial genomes from metagenomic samples is still not a trivial task. Current metagenomic binners do not take full advantage of assembly graphs and are not optimized for long-read assemblies. Deep graph learning algorithms have been proposed in other fields to deal with complex graph data structures.
View Article and Find Full Text PDFIn 2016, the International Agency for Research on Cancer, part of the World Health Organization, released the Exposome-Explorer, the first database dedicated to biomarkers of exposure for environmental risk factors for diseases. The database contents resulted from a manual literature search that yielded over 8,500 citations, but only a small fraction of these publications were used in the final database. Manually curating a database is time-consuming and requires domain expertise to gather relevant data scattered throughout millions of articles.
View Article and Find Full Text PDFBackground: Named Entity Linking systems are a powerful aid to the manual curation of digital libraries, which is getting increasingly costly and inefficient due to the information overload. Models based on the Personalized PageRank (PPR) algorithm are one of the state-of-the-art approaches, but these have low performance when the disambiguation graphs are sparse.
Findings: This work proposes a Named Entity Linking framework designated by Relation Extraction for Entity Linking (REEL) that uses automatically extracted relations to overcome this limitation.
Biomedical relation extraction (RE) datasets are vital in the construction of knowledge bases and to potentiate the discovery of new interactions. There are several ways to create biomedical RE datasets, some more reliable than others, such as resorting to domain expert annotations. However, the emerging use of crowdsourcing platforms, such as Amazon Mechanical Turk (MTurk), can potentially reduce the cost of RE dataset construction, even if the same level of quality cannot be guaranteed.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms.
View Article and Find Full Text PDFAccessible negative results are relevant for researchers and clinicians not only to limit their search space but also to prevent the costly re-exploration of research hypotheses. However, most biomedical relation extraction datasets do not seek to distinguish between a false and a negative relation among two biomedical entities. Furthermore, datasets created using distant supervision techniques also have some false negative relations that constitute undocumented/unknown relations (missing from a knowledge base).
View Article and Find Full Text PDFBMC Bioinformatics
October 2019
Background: Biomedical literature concerns a wide range of concepts, requiring controlled vocabularies to maintain a consistent terminology across different research groups. However, as new concepts are introduced, biomedical literature is prone to ambiguity, specifically in fields that are advancing more rapidly, for example, drug design and development. Entity linking is a text mining task that aims at linking entities mentioned in the literature to concepts in a knowledge base.
View Article and Find Full Text PDFBackground: Recent studies have proposed deep learning techniques, namely recurrent neural networks, to improve biomedical text mining tasks. However, these techniques rarely take advantage of existing domain-specific resources, such as ontologies. In Life and Health Sciences there is a vast and valuable set of such resources publicly available, which are continuously being updated.
View Article and Find Full Text PDFNamed-entity recognition aims at identifying the fragments of text that mention entities of interest, that afterwards could be linked to a knowledge base where those entities are described. This manuscript presents our minimal named-entity recognition and linking tool (MER), designed with flexibility, autonomy and efficiency in mind. To annotate a given text, MER only requires: (1) a lexicon (text file) with the list of terms representing the entities of interest; (2) optionally a tab-separated values file with a link for each term; (3) and a Unix shell.
View Article and Find Full Text PDFNamed-Entity Recognition is commonly used to identify biological entities such as proteins, genes, and chemical compounds found in scientific articles. The Human Phenotype Ontology (HPO) is an ontology that provides a standardized vocabulary for phenotypic abnormalities found in human diseases. This article presents the Identifying Human Phenotypes (IHP) system, tuned to recognize HPO entities in unstructured text.
View Article and Find Full Text PDFTolerogenic cell therapies provide an alternative to conventional immunosuppressive treatments of autoimmune disease and address, among other goals, the rejection of organ or stem cell transplants. Since various methodologies can be followed to develop tolerogenic therapies, it is important to be aware and up to date on all available studies that may be relevant to their improvement. Recently, knowledge graphs have been proposed to link various sources of information, using text mining techniques.
View Article and Find Full Text PDFMany biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited.
View Article and Find Full Text PDFThe automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents.
View Article and Find Full Text PDFBackground: Our approach to the BioCreative IV challenge of recognition and classification of drug names (CHEMDNER task) aimed at achieving high levels of precision by applying semantic similarity validation techniques to Chemical Entities of Biological Interest (ChEBI) mappings. Our assumption is that the chemical entities mentioned in the same fragment of text should share some semantic relation. This validation method was further improved by adapting the semantic similarity measure to take into account the h-index of each ancestor.
View Article and Find Full Text PDFJ Integr Bioinform
October 2014
Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, \"Identifying Interactions between Chemical Entities\" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction.
View Article and Find Full Text PDF