Publications by authors named "Andre Laestadius"

The exchange-only virial relation due to Levy and Perdew is revisited. Invoking the adiabatic connection, we introduce the exchange energy in terms of the right-derivative of the universal density functional w.r.

View Article and Find Full Text PDF

We propose exchanging the energy functionals in ground-state density-functional theory with physically equivalent exact force expressions as a new promising route toward approximations to the exchange-correlation potential and energy. In analogy to the usual energy-based procedure, we split the force difference between the interacting and auxiliary Kohn-Sham system into a Hartree, an exchange, and a correlation force. The corresponding scalar potential is obtained by solving a Poisson equation, while an additional transverse part of the force yields a vector potential.

View Article and Find Full Text PDF

The Hohenberg-Kohn theorem of density-functional theory (DFT) is broadly considered the conceptual basis for a full characterization of an electronic system in its ground state by just one-body particle density. In this Part II of a series of two articles, we aim at clarifying the status of this theorem within different extensions of DFT including magnetic fields. We will in particular discuss current-density-functional theory (CDFT) and review the different formulations known in the literature, including the conventional paramagnetic CDFT and some nonstandard alternatives.

View Article and Find Full Text PDF

We propose a novel a posteriori error assessment for the single-reference coupled-cluster (SRCC) method called the -diagnostic. We provide a derivation of the -diagnostic that is rooted in the mathematical analysis of different SRCC variants. We numerically scrutinized the -diagnostic, testing its performance for (1) geometry optimizations, (2) electronic correlation simulations of systems with varying numerical difficulty, and (3) the square-planar copper complexes [CuCl], [Cu(NH)], and [Cu(HO)].

View Article and Find Full Text PDF

The Hohenberg-Kohn theorem of density-functional theory (DFT) is broadly considered the conceptual basis for a full characterization of an electronic system in its ground state by just the one-body particle density. Part I of this review aims at clarifying the status of the Hohenberg-Kohn theorem within DFT and Part II at different extensions of the theory that include magnetic fields. We collect evidence that the Hohenberg-Kohn theorem does not so much form the basis of DFT, but is rather the consequence of a more comprehensive mathematical framework.

View Article and Find Full Text PDF

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.

View Article and Find Full Text PDF

Density-functional theory (DFT) requires an extra variable besides the electron density in order to properly incorporate magnetic-field effects. In a time-dependent setting, the gauge-invariant, total current density takes that role. A peculiar feature of the static ground-state setting is, however, that the gauge-dependent paramagnetic current density appears as the additional variable instead.

View Article and Find Full Text PDF

A cornerstone of current-density functional theory (CDFT) in its paramagnetic formulation is proven. After a brief outline of the mathematical structure of CDFT, the lower semicontinuity and expectation-valuedness of the CDFT constrained-search functional is proven, meaning that there is always a minimizing density matrix in the CDFT constrained-search universal density functional. These results place the mathematical framework of CDFT on the same footing as that of standard DFT.

View Article and Find Full Text PDF

We investigate and prove Lieb-Oxford bounds in one dimension by studying convex potentials that approximate the ill-defined Coulomb potential. A Lieb-Oxford inequality establishes a bound of the indirect interaction energy for electrons in terms of the one-body particle density ρ of a wave function ψ. Our results include modified soft Coulomb potential and regularized Coulomb potential.

View Article and Find Full Text PDF

The unique-continuation property from sets of positive measure is here proven for the many-body magnetic Schrödinger equation. This property guarantees that if a solution of the Schrödinger equation vanishes on a set of positive measure, then it is identically zero. We explicitly consider potentials written as sums of either one-body or two-body functions, typical for Hamiltonians in many-body quantum mechanics.

View Article and Find Full Text PDF

The exact Kohn-Sham iteration of generalized density-functional theory in finite dimensions with a Moreau-Yosida regularized universal Lieb functional and an adaptive damping step is shown to converge to the correct ground-state density.

View Article and Find Full Text PDF

Recent work has established Moreau-Yosida regularization as a mathematical tool to achieve rigorous functional differentiability in density-functional theory. In this article, we extend this tool to paramagnetic current-density-functional theory, the most common density-functional framework for magnetic field effects. The extension includes a well-defined Kohn-Sham iteration scheme with a partial convergence result.

View Article and Find Full Text PDF

In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework.

View Article and Find Full Text PDF

A detailed account of the Kohn-Sham (KS) algorithm from quantum chemistry, formulated rigorously in the very general setting of convex analysis on Banach spaces, is given here. Starting from a Levy-Lieb-type functional, its convex and lower semi-continuous extension is regularized to obtain differentiability. This extra layer allows us to rigorously introduce, in contrast to the common unregularized approach, a well-defined KS iteration scheme.

View Article and Find Full Text PDF

We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed.

View Article and Find Full Text PDF