Publications by authors named "Andre L Ouedraogo"

Background: Evidence shows that user fee exemption policies improve the use of maternal, newborn, and child health (MNCH) services. However, addressing the cost of care is only one barrier to accessing MNCH services. Poor geographic accessibility relating to distance is another.

View Article and Find Full Text PDF

Background: Half of global child deaths occur in sub-Saharan Africa. Understanding child mortality patterns and risk factors will help inform interventions to reduce this heavy toll. The Nanoro Health and Demographic Surveillance System (HDSS), Burkina Faso was described previously, but patterns and potential drivers of heterogeneity in child mortality in the district had not been studied.

View Article and Find Full Text PDF

The first case of COVID-19 in sub-Saharan Africa (SSA) was reported by Nigeria on February 27, 2020. Whereas case counts in the entire region remain considerably less than those being reported by individual countries in Europe, Asia, and the Americas, variation in preparedness and response capacity as well as in data availability has raised concerns about undetected transmission events in the SSA region. To capture epidemiological details related to early transmission events into and within countries, a line list was developed from publicly available data on institutional websites, situation reports, press releases, and social media accounts.

View Article and Find Full Text PDF

Background: Malaria incidence has plateaued in Sub-Saharan Africa despite Seasonal Malaria Chemoprevention's (SMC) introduction. Community health workers (CHW) use a door-to-door delivery strategy to treat children with SMC drugs, but for SMC to be as effective as in clinical trials, coverage must be high over successive seasons.

Methods: We developed and used a microplanning model that utilizes population raster to estimate population size, generates optimal households visit itinerary, and quantifies SMC coverage based on CHWs' time investment for treatment and walking.

View Article and Find Full Text PDF

Background: Absolute numbers of COVID-19 cases and deaths reported to date in the sub-Saharan Africa (SSA) region have been significantly lower than those across the Americas, Asia and Europe. As a result, there has been limited information about the demographic and clinical characteristics of deceased cases in the region, as well as the impacts of different case management strategies.

Methods: Data from deceased cases reported across SSA through 10 May 2020 and from hospitalized cases in Burkina Faso through 15 April 2020 were analyzed.

View Article and Find Full Text PDF

Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections.

View Article and Find Full Text PDF

Individual-based models provide modularity and structural flexibility necessary for modeling of infectious diseases at the within-host and population levels, but are challenging to implement. Levels of complexity can exceed the capacity and timescales for students and trainees in most academic institutions. Here we describe the process and advantages of a multi-disease framework approach developed with formal software support.

View Article and Find Full Text PDF

As Africa-wide malaria prevalence declines, an understanding of human movement patterns is essential to inform how best to target interventions. We fitted movement models to trip data from surveys conducted at 3-5 sites throughout each of Mali, Burkina Faso, Zambia and Tanzania. Two models were compared in terms of their ability to predict the observed movement patterns - a gravity model, in which movement rates between pairs of locations increase with population size and decrease with distance, and a radiation model, in which travelers are cumulatively "absorbed" as they move outwards from their origin of travel.

View Article and Find Full Text PDF

Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P.

View Article and Find Full Text PDF

The original version of this Article contained errors in Fig. 3. In panel a, bars from a chart depicting the percentage of antibody-positive individuals in non-infectious and infectious groups were inadvertently included in place of bars depicting the percentage of infectious individuals, as described in the Article and figure legend.

View Article and Find Full Text PDF

Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray.

View Article and Find Full Text PDF

Background: As malaria prevalence declines in many parts of the world due to widescale control efforts and as drug-resistant parasites begin to emerge, a quantitative understanding of human movement is becoming increasingly relevant to malaria control. However, despite its importance, significant knowledge gaps remain regarding human movement, particularly in sub-Saharan Africa.

Methods: A quantitative survey of human movement patterns was conducted in four countries in sub-Saharan Africa: Mali, Burkina Faso, Zambia, and Tanzania, with three to five survey locations chosen in each country.

View Article and Find Full Text PDF

Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium falciparum gametocytes are crucial for malaria transmission, and understanding the human infectious reservoir is essential for effective malaria control.
  • A study involving 130 participants used sensitive RNA diagnostics to identify infectious individuals and found that 32.6% of blood samples led to mosquito infections, which were influenced by age and the presence of asexual parasites.
  • The research indicated that human infectiousness peaks at the start of the wet season and emphasizes the need for intervention strategies that target both children and individuals with submicroscopic infections, particularly during the dry season.
View Article and Find Full Text PDF

Background: Elimination of malaria can only be achieved through removal of all vectors or complete depletion of the infectious reservoir in humans. Mechanistic models can be built to synthesize diverse observations from the field collected under a variety of conditions and subsequently used to query the infectious reservoir in great detail.

Methods: The EMOD model of malaria transmission was calibrated to prevalence, incidence, asexual parasite density, gametocyte density, infection duration, and infectiousness data from nine study sites.

View Article and Find Full Text PDF

Background: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity.

View Article and Find Full Text PDF

Background: Artemisinin combination therapy effectively clears asexual malaria parasites and immature gametocytes but does not prevent posttreatment malaria transmission. Ivermectin (IVM) may reduce malaria transmission by killing mosquitoes that take blood meals from IVM-treated humans.

Methods: In this double-blind, placebo-controlled trial, 120 asymptomatic Plasmodium falciparum parasite carriers were randomized to receive artemether-lumefantrine (AL) plus placebo or AL plus a single or repeated dose (200 µg/kg) of ivermectin (AL-IVM1 and AL-IVM2, respectively).

View Article and Find Full Text PDF

Mosquito feeding assays play an important role in quantifying malaria transmission potential in epidemiological and clinical studies. At present, membrane feeding assays are incompletely standardised. This affects our understanding of the precision of the assay and its suitability for evaluating transmission-blocking interventions.

View Article and Find Full Text PDF

Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito feeding assays conducted in Burkina Faso and Kenya. Plasmodium falciparum infects Anopheles gambiae efficiently at low densities (4% mosquitoes at 1/µl blood), although substantially more (>200/µl) are required to increase infection further.

View Article and Find Full Text PDF

Malaria parasite prevalence in endemic populations is an essential indicator for monitoring the progress of malaria control, and has traditionally been assessed by microscopy. However, surveys increasingly use sensitive molecular methods that detect higher numbers of infected individuals, questioning our understanding of the true infection burden and resources required to reduce it. Here we analyse a series of data sets to characterize the distribution and epidemiological factors associated with low-density, submicroscopic infections.

View Article and Find Full Text PDF

Background: Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.

View Article and Find Full Text PDF

Acquisition of immunity to Plasmodium falciparum sexual stages is a key determinant for reducing human-mosquito transmission by preventing the fertilization and the development of the parasite in the mosquito midgut. Naturally acquired immunity against sexual stages may therefore form the basis for the development of transmission-blocking vaccines, but studies conducted to date offer little in the way of consistent findings. Here, we describe the acquisition of antigametocyte immune responses in malaria-exposed individuals in Burkina Faso.

View Article and Find Full Text PDF

Background: Malaria transmission depends on the presence of gametocytes in the peripheral blood. In this study, the age-dependency of gametocytaemia was examined by microscopy and molecular tools.

Methods: A total of 5,383 blood samples from individuals of all ages were collected over six cross sectional surveys in Burkina Faso.

View Article and Find Full Text PDF

Background: Man to mosquito transmission of malaria depends on the presence of the sexual stage parasites, gametocytes, that often circulate at low densities. Gametocyte densities below the microscopical threshold of detection may be sufficient to infect mosquitoes but the importance of submicroscopical gametocyte carriage in different transmission settings is unknown.

Methodology/principal Findings: Membrane feeding experiments were carried out on 80 children below 14 years of age at the end of the wet season in an area of seasonal malaria transmission in Burkina Faso.

View Article and Find Full Text PDF