Plants (Basel)
June 2024
Water deficiency has been recognized as a major abiotic stress that causes losses in maize crops around the world. The maize crop is very important due to the range of products that are derived from this plant. A potential way to reduce the damages caused by water deficiency in maize crops is through the association with plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF).
View Article and Find Full Text PDFPlanta
June 2024
Deforestation of Atlantic Forest has caused prolonged drought events in the last decades. The need for reforestation is growing, and the development of native seedlings that are more tolerant to drought stress is necessary. A biotechnological tool that improves plant tolerance is the use of plant growth-promoting bacteria (PGPB) as inoculants.
View Article and Find Full Text PDFBackground: The release of organic acids (OAs) is considered the main mechanism used by phosphate-solubilizing bacteria (PSB) to dissolve inorganic phosphate in soil. Nevertheless, little is known about the effect of individual OAs produced by a particular PSB in a soil-plant system. For these reasons, the present work aimed at investigating the effect of Enterobacter sp.
View Article and Find Full Text PDFThe subject of this review is to discuss some aspects related to the use of biopolymeric matrices as carriers for plant-growth promoting bacteria (PGPB) in agricultural systems as a possible technological solution for the establishment of agricultural production practices that result in fewer adverse impacts on the environment, reporting some promising and interesting results on the topic. Results from the encapsulation of different PGPB on alginate, starch, chitosan, and gelatin matrices are discussed, systematizing some advances made in this area of knowledge in recent years. Encapsulation of these bacteria has been shown to be an effective method for protecting them from unsuitable environments, and these new products that can act as biofertilizers and biopesticides play an important role in the establishment of a sustainable and modern agriculture.
View Article and Find Full Text PDFPlant microbiota is usually enriched with bacteria producers of secondary metabolites and represents a valuable source of novel species and compounds. Here, we analyzed the diversity of culturable root-associated bacteria of the medicinal native plant Baccharis trimera (Carqueja) and screened promising isolates for their antimicrobial properties. The rhizobacteria were isolated from the endosphere and rhizosphere of B.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2021
Recently, zinc-based materials have gained immense attention as antimicrobial agents. In this study, zinc-doped mesoporous hydroxyapatites (HAps) with various Zn contents were prepared by co-precipitation using a phosphoprotein as the porous template. The use of the phosphoprotein as the porous template resulted in the formation of zinc-doped mesoporous HAps (mHAps) with large pores and specific surface area (182 m g), as indicated by the nitrogen adsorption/desorption measurements.
View Article and Find Full Text PDFIt is known that plant and associated bacteria coevolved, but just now the roles of chemical signaling compounds in these intricate relationships have been systematically studied. Many Gram-negative bacteria produce N-acyl-L-homoserine lactones (AHL), chemical signals used in quorum-sensing bacterial communications mechanisms. In recent years, it has been shown that these compounds may also influence the development of plants, acting as allelochemicals, in still not well understood eukaryot-prokaryot interactions.
View Article and Find Full Text PDFPlanta
March 2020
Plant growth-promoting bacteria association improved the enzymatic and non-enzymatic antioxidant pathways in Neotropical trees under drought, which led to lower oxidative damage and enhanced drought tolerance in these trees. Water deficit is associated with oxidative stress in plant cells and may, thus, negatively affect the establishment of tree seedlings in reforestation areas. The association with plant growth-promoting bacteria (PGPB) is known to enhance the antioxidant response of crops, but this strategy has not been tested in seedlings of Neotropical trees.
View Article and Find Full Text PDFCurr Microbiol
July 2020
The garlic contains sulfur bioactive compounds responsible for medicinal properties. The decrease of these compounds due to inadequate storage conditions reduces the beneficial properties and favors infection by microorganisms. Several studies have shown high frequency of garlic infected with Aspergillus section Nigri that potentially produce mycotoxin.
View Article and Find Full Text PDFBackground: The co-inoculation of soybean with and other plant growth-promoting rhizobacteria (PGPR) is considered a promising technology. However, there has been little quantitative analysis of the effects of this technique on yield variables. In this context, the present study aiming to provide a quantification of the effects of the co-inoculation of and PGPR on the soybean crop using a meta-analysis approach.
View Article and Find Full Text PDFThe development of cultivars with an improved nitrogen use efficiency (NUE) together with the application of plant growth-promoting bacteria is considered one of the main strategies for reduction of fertilizers use. In this sense, this study: i) evaluated the effect of Azospirillum brasilense on the initial development of maize genotypes; ii) investigated the influence of A. brasilense inoculation on NUE under nitrogen deficit; and iii) sought for more NUE genotypes with higher responsiveness to A.
View Article and Find Full Text PDFThe objective of this study was to develop biodegradable coatings for agriculture crop seeds based on starch, gelatin, and polyvinyl alcohol (PVA). Developed materials were characterized according to their microstructures, barrier properties, influence on germination of maize seeds, and ability to sustain Azospirillum brasilense Ab-V5 viability in coated maize seeds. The coatings were obtained employing different proportions of starch, gelatin, and PVA, ranging from 0 to 3.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2018
The inoculation of tree species with plant growth-promoting bacteria (PGPB) has emerged as an important strategy for the acclimation of seedlings by improving plant tolerance to biotic and abiotic stresses. This study aimed to evaluate the effects of inoculation with bacterial species (Azospirillum brasilense - Ab-V5, Bacillus sp., Azomonas sp.
View Article and Find Full Text PDFAlthough strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of inoculants when used as substitute of N-fertilizers, biomass of strain Ab-V5 enriched in exopolysaccharides (EPS) and polyhydroxybutirate (PHB) was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions.
View Article and Find Full Text PDFRes Microbiol
April 2017
Like many rhizobia, Rhizobium tropici produces indole-3-acetic acid (IAA), an important signal molecule required for root hair infection in rhizobia-legume symbioses. However, the IAA biosynthesis pathway and its regulation by R. tropici are still poorly understood.
View Article and Find Full Text PDFis a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2016
The extrusion technology of blends formed by compounds with different physicochemical properties often results in new materials that present properties distinctive from its original individual constituents. Here, we report the use of melt extrusion of blends made from low-cost materials to produce a biodegradable foam suitable for use as an inoculant carrier of plant growth-promoting bacteria (PGPB). Six formulations were prepared with variable proportions of the raw materials; the resulting physicochemical and structural properties are described, as well as formulation performance in the maintenance of bacterial viability during 120 days of storage.
View Article and Find Full Text PDFA total of 95 yeast strains were isolated from the microbiota of different grapes collected at vineyards in southern Brazil. The yeasts were screened for β-(1 → 3)-glucanases using a newly developed zymogram method that relies upon the appearance of clearance zones around growing colonies cultured on agar–botryosphaeran medium and also by submerged fermentation on nutrient medium containing botryosphaeran, a (1 → 3),(1 → 6)-β-d-glucan. Among 14 β-(1 → 3)-glucanase-positive yeasts identified, four strains produced the highest β-glucanolytic activities and were evaluated for enzyme production on cellobiose, botryosphaeran, and mycelial biomass from Botryosphaeria rhodina (MAMB-05).
View Article and Find Full Text PDFFunct Integr Genomics
June 2013
Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood.
View Article and Find Full Text PDFAspergillus westerdijkiae is a potent ochratoxin A (OTA) producer that has been found in coffee beans. OTA is known to have nephrotoxic effects and carcinogenic potential in animal species. Here we report for the first time the Agrobacterium-mediated transformation for Aspergillus westerdijkiae and the generation of ochratoxin-defective mutants.
View Article and Find Full Text PDF