Clusters supported by solid substrates are prime candidates for heterogeneous catalysis and can be prepared in various ways. While mass-selected soft-landing methods are often used for the generation of monodisperse particles, self-assembly typically leads to a range of different cluster sizes. Here we show by scanning tunneling microscopy measurements that in the initial stages of growth, Mn forms trimers on a close-packed hexagonal Ir surface, providing a route for self-organized monodisperse cluster formation on an isotropic metallic surface.
View Article and Find Full Text PDFComplex magnetic order arises due to the competition of different interactions between the magnetic moments. Recently, there has been an increased interest in such states not only to unravel the fundamental physics involved, but also with regards to applications exploiting their unique interplay with moving electrons. Whereas it is the Dzyaloshinskii-Moriya interaction (DMI) that has attracted much attention because of its nature to induce non-collinear magnetic order including magnetic-field stabilized skyrmions, it is the frustration of exchange interactions that can drive magnetic order down to the nano-scale.
View Article and Find Full Text PDFAntiferromagnets have recently moved into the focus of application-related research, with the perspective to use them in future spintronics devices. At the same time the experimental determination of the detailed spin texture remains challenging. Here we use spin-polarized scanning tunneling microscopy to investigate the spin structure of antiferromagnetic domain walls.
View Article and Find Full Text PDFWe experimentally verify the existence of two model-type magnetic ground states that were previously predicted but so far unobserved. We find them in Mn monolayers on the Re(0001) surface using spin-polarized scanning tunneling microscopy. For fcc stacking of Mn the collinear row-wise antiferromagnetic state occurs, whereas for hcp Mn a three-dimensional spin structure appears, which is a superposition of three row-wise antiferromagnetic states known as the triple-q state.
View Article and Find Full Text PDFAs a heavy analog of graphene, plumbene is a two-dimensional material with strong spin-orbit coupling effects. Using scanning tunneling microscopy, we observe that Pb forms a flat honeycomb lattice on an Fe monolayer on Ir(111). In contrast, without the Fe layer, a c(2×4) structure of Pb on Ir(111) is found.
View Article and Find Full Text PDFA large noncollinear magnetoresistance (NCMR) is observed for Rh/Co atomic bilayers on Ir(111) using scanning tunneling microscopy and spectroscopy. The effect is 20% at the Fermi energy and large in a broad energy range. The NCMR can be used to electrically detect nanometer-scale domain walls and skyrmions directly in the tunnel current without the need for a differential measurement.
View Article and Find Full Text PDFDue to their exceptional topological and dynamical properties magnetic skyrmions-localized stable spin structures-show great promise for spintronic applications. To become technologically competitive, isolated skyrmions with diameters below 10 nm stable at zero magnetic field and at room temperature are desired. Despite finding skyrmions in a wide spectrum of materials, the quest for a material with these envisioned properties is ongoing.
View Article and Find Full Text PDFUsing spin-polarized scanning tunneling microscopy and density functional theory we demonstrate the occurrence of a novel type of noncollinear spin structure in Rh/Fe atomic bilayers on Ir(111). We find that higher-order exchange interactions depend sensitively on the stacking sequence. For fcc-Rh/Fe/Ir(111), frustrated exchange interactions are dominant and lead to the formation of a spin spiral ground state with a period of about 1.
View Article and Find Full Text PDFMagnetic skyrmions are localized nanometer-sized spin configurations with particle-like properties, which are envisioned to be used as bits in next-generation information technology. An essential step toward future skyrmion-based applications is to engineer key magnetic parameters for developing and stabilizing individual magnetic skyrmions. Here we demonstrate the tuning of the non-collinear magnetic state of an Fe double layer on an Ir(111) substrate by loading the sample with atomic hydrogen.
View Article and Find Full Text PDFSpin-polarized scanning tunneling microscopy investigations reveal a significant increase of the magnetic period of spin spirals in three-atomic-layer-thick Fe films on Ir(111), from about 4 nm at 8 K to about 65 nm at room temperature. We attribute this considerable influence of temperature on the magnetic length scale of noncollinear spin states to different exchange interaction coefficients in the different Fe layers. We thus propose a classical spin model that reproduces the experimental observations and in which the crucial feature is the presence of magnetically coupled atomic layers with different interaction strengths.
View Article and Find Full Text PDFWe have employed spin-polarized scanning tunneling microscopy and Monte Carlo simulations to investigate the effect of lateral confinement onto the nano-Skyrmion lattice in Fe/Ir(111). We find a strong coupling of one diagonal of the square magnetic unit cell to the close-packed edges of Fe nanostructures. In triangular islands this coupling in combination with the mismatching symmetries of the islands and of the square nano-Skyrmion lattice leads to frustration and triple-domain states.
View Article and Find Full Text PDFControlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer.
View Article and Find Full Text PDFSpin-polarized scanning tunneling microscopy is used to investigate the magnetic state of the Fe monolayer on Re(0001). Two coexisting atomic-scale noncollinear spin textures are observed with a sharp transition between them on the order of the atomic lattice spacing. A position correlation between the two spin states is observed both in experiments and in Monte Carlo simulations, demonstrating their coupling behavior.
View Article and Find Full Text PDFWe report on the influence of uniaxial strain relief on the spin spiral state in the Fe double layer grown on Ir(111). Scanning tunneling microscopy (STM) measurements reveal areas with reconstruction lines resulting from uniaxial strain relief due to the lattice mismatch of Fe and Ir atoms, as well as pseudomorphic strained areas. Magnetic field-dependent spin-polarized STM measurements of the reconstructed Fe double layer reveal cycloidal spin spirals with a period on the nm scale.
View Article and Find Full Text PDFMagnetic skyrmions are localized non-collinear spin textures with a high potential for future spintronic applications. Skyrmion phases have been discovered in a number of materials and a focus of current research is to prepare, detect and manipulate individual skyrmions for implementation in devices. The local experimental characterization of skyrmions has been performed by, for example, Lorentz microscopy or atomic-scale tunnel magnetoresistance measurements using spin-polarized scanning tunnelling microscopy.
View Article and Find Full Text PDFThe atomic-scale spin structure of individual isolated Skyrmions in an ultrathin film is investigated in real space by spin-polarized scanning tunneling microscopy. Their axial symmetry as well as their unique rotational sense is revealed by using both out-of-plane and in-plane sensitive tips. The size and shape of Skyrmions change as a function of the magnetic field.
View Article and Find Full Text PDFSpin-resolved scanning tunneling microscopy is used to reveal a commensurate hexagonal nanoskyrmion lattice in the hcp stacked Fe monolayer on Ir(111). The exact nature of the spin configuration is due to magnetic interactions between the Fe atoms and the Ir substrate, either originating from polarization effects, or due to a three-site hopping mechanism of the Dzyaloshinsky-Moriya interaction leading to a canting of the Dzyaloshinsky-Moriya vector with respect to the interface.
View Article and Find Full Text PDFThe spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals.
View Article and Find Full Text PDFThe magnetic ground state of biatomic Fe chains on the reconstructed (5×1)-Ir(001) surface is a cycloidal 120° spin spiral. Spin-resolved scanning tunneling microscopy reveals a striking variation of magnetic field dependences among the chains, which we attribute to parity effects resulting from finite lengths. Numerical simulations show that the chains are divided in three symmetry classes with the exact number of atoms in the chain determining the size and direction of their net magnetic moment.
View Article and Find Full Text PDFTopologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states.
View Article and Find Full Text PDFWith the advent of scanning probe microscopy techniques that involve a tip and a sample in relative motion in the contact or noncontact regime, the microscopic aspects of friction have become a major branch of research called nanotribology. A significant number of recent studies in this field have concentrated on the distinction between electronic and phononic contributions to friction. Here, we are using the combination of spin-polarized scanning tunneling microscopy and single-atom manipulation in order to move individual magnetic atoms over a magnetic template.
View Article and Find Full Text PDFVector spin chirality is one of the fundamental characteristics of complex magnets. For a one-dimensional spin-spiral state it can be interpreted as the handedness, or rotational sense of the spiral. Here, using spin-polarized scanning tunneling microscopy, we demonstrate the occurrence of an atomic-scale spin spiral in finite individual bi-atomic Fe chains on the (5×1)-Ir(001) surface.
View Article and Find Full Text PDFSingle magnetic atoms on surfaces are the smallest conceivable units for two-dimensional magnetic data storage. Previous experiments on such systems have investigated magnetization curves, the many-body Kondo effect and magnetic excitations in quantum spin systems, but a stable magnetization has not yet been detected for an atom on a non-magnetic surface in the absence of a magnetic field. The spin direction of a single magnetic atom can be fixed by coupling it to an underlying magnetic substrate via the exchange interaction, but it is then difficult to differentiate between the magnetism of the atom and the surface.
View Article and Find Full Text PDF