Key Points: Polycystic kidney disease (PKD) is characterized by continuous cyst growth, which results in a decline in kidney function. Deletion of P2Y2R and pharmacological antagonism of purinergic signaling significantly reduced cyst growth in an orthologous PKD mouse model. P2Y2R was expressed in cysts of human PKD nephrectomies, which makes P2Y2R a reasonable target for treatment of PKD.
View Article and Find Full Text PDFUltra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging.
View Article and Find Full Text PDFComplex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases.
View Article and Find Full Text PDFThe Cl-transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease.
View Article and Find Full Text PDFMutations in polycystin-1 which is encoded by the gene are the main causes for the development of autosomal dominant polycystic kidney disease. However, only little is known about the physiological function of polycystin-1 and even less about the regulation of its expression. Here, we show that expression of is induced by hypoxia and compounds that stabilize the hypoxia-inducible transcription factor (HIF) 1 in primary human tubular epithelial cells.
View Article and Find Full Text PDFCollecting-duct-derived renal epithelial cells switch from tubule to cyst formation; however, the cysts still form tubules after injury of the cyst-lining epithelium. Here, we provide a protocol that describes in vitro cyst growth with focus on glass-capillary-induced cyst wall injury to induce tubule formation. We detail steps for the establishment of the in vitro cyst assay, followed by puncture of the cysts in the collagen matrix.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) mainly results from mutations in the PKD1 gene, which encodes polycystin 1. It is the most common inherited kidney disease and is characterized by a progressive bilateral increase in cyst number and size, often leading to kidney failure. The cellular energy sensor and regulator adenosine monophosphate stimulated protein kinase (AMPK) has been implicated as a promising new therapeutic target.
View Article and Find Full Text PDF(1) Background: Autosomal dominant polycystic kidney disease (ADPKD) is a frequent monogenic disorder that leads to progressive renal cyst growth and renal failure. Strategies to inhibit cyst growth in non-human cyst models have often failed in clinical trials. There is a significant need for models that enable studies of human cyst growth and drug trials.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease is the most common monogenic disease that causes end-stage renal failure. It primarily results from mutations in the PKD1 gene that encodes for Polycystin-1. How loss of Polycystin-1 translates into bilateral renal cyst development is mostly unknown.
View Article and Find Full Text PDFEvolution of clear cell renal cell carcinoma is guided by dysregulation of hypoxia-inducible transcription factor (HIF) pathways following loss of the von Hippel-Lindau tumor suppressor protein. Renal cell carcinoma (RCC)-associated polymorphisms influence HIF-DNA interactions at enhancers of important oncogenes thereby modulating the risk of developing renal cancer. A strong signal of genome-wide association with RCC was determined for the single nucleotide polymorphism (SNP) rs4903064, located on chr14q.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of bilateral renal cysts which enlarge continuously, leading to compression of adjacent intact nephrons. The growing cysts lead to a progressive decline in renal function. Cyst growth is driven by enhanced cell proliferation and chloride secretion into the cyst lumen.
View Article and Find Full Text PDFProgressive cyst growth leads to decline of renal function in polycystic kidney disease. Macrophage migration inhibitory factor (MIF) was found to be upregulated in cyst-lining cells in a mouse model of polycystic kidney disease and to promote cyst growth. In addition, MIF can be secreted by tubular cells and may contribute to cyst growth in an autocrine manner.
View Article and Find Full Text PDFIn autosomal dominant polycystic kidney disease (ADPKD) multiple bilateral renal cysts gradually enlarge, leading to a decline in renal function. Transepithelial chloride secretion through cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1) are known to drive cyst enlargement. Here we demonstrate that loss of Pkd1 increased expression of TMEM16A and CFTR and Cl secretion in murine kidneys, with TMEM16A essentially contributing to cyst growth.
View Article and Find Full Text PDFJ Am Soc Nephrol
February 2019
Background: Transepithelial chloride secretion, through the chloride channels cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1), drives cyst enlargement in polycystic kidney disease (PKD). Polycystic kidneys are hypoxic, and oxidative stress activates TMEM16A. However, mechanisms for channel activation in PKD remain obscure.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations of the PKD1 gene and characterized by growth of bilateral renal cysts. Cyst growth is accompanied by regional hypoxia and induction of hypoxia-inducible factor (HIF)-1α in cyst-lining epithelial cells. To determine the relevance of HIF-1α for cyst growth in vivo we used an inducible kidney epithelium-specific knockout mouse to delete Pkd1 at postnatal day 20 or 35 to induce polycystic kidney disease of different severity and analyzed the effects of Hif-1α co-deletion and HIF-1α stabilization using a prolyl-hydroxylase inhibitor.
View Article and Find Full Text PDFPolycystic kidney diseases are characterized by numerous renal cysts that continuously enlarge resulting in compression of intact nephrons and tissue hypoxia. Recently, we have shown that hypoxia-inducible factor (HIF)-1α promotes secretion-dependent cyst expansion, presumably by transcriptional regulation of proteins that are involved in calcium-activated chloride secretion. Here, we report that HIF-1α directly activates expression of the purinergic receptor P2Y2R in human primary renal tubular cells.
View Article and Find Full Text PDFUnlabelled: Polycystic kidney diseases are characterized by the development of numerous bilateral renal cysts that continuously enlarge resulting in a decline of kidney function due to compression of intact nephrons. Cyst growth is driven by transepithelial chloride secretion which depends on both intracellular cAMP and calcium. Mechanisms that are involved in the regulation of the underlying secretory pathways remain incompletely understood.
View Article and Find Full Text PDFReduced nephron number predisposes to hypertension and kidney disease. Interaction of the branching ureteric bud and surrounding mesenchymal cells determines nephron number. Since oxygen supply may be critical for intrauterine development, we tested whether hypoxia and hypoxia-inducible factor-1α (HIF-1α) influence nephrogenesis.
View Article and Find Full Text PDF