Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB uses extracellular electron transfer to increase its NAD/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly.
View Article and Find Full Text PDFReal-time process metrics are standard for the majority of fermentation-based industries but have not been widely adopted by the wine industry. In this study, replicate fermentations were conducted with temperature as the main process parameter and assessed via in-line Oxidation Reduction Potential (ORP) probes and at-line profiling of phenolics compounds by UV-Vis spectroscopy. The California and Oregon vineyards used in this study displayed consistent vinification outcomes over five vintages and are representative of sites producing faster- and slower-fermenting musts.
View Article and Find Full Text PDFObjective: Current intrapartum fetal monitoring technology is unable to provide physicians with an objective metric of fetal well-being, leading to degraded patient outcomes and increased litigation costs. Fetal oxygen saturation (SpO2) is a more suitable measure of fetal distress, but the inaccessibility of the fetus prior to birth makes this impossible to capture through current means. In this paper, we present a fully non-invasive, transabdominal fetal oximetry (TFO) system that provides in utero measures of fetal SpO2.
View Article and Find Full Text PDFDedicated lactation rooms are a modern development as mothers return to work while still providing breastmilk to their absent infants. This study describes the built environment microbiome of lactation rooms and daycares, and explores the influence of temperature and humidity on the microbiome of lactation rooms. Sterile swabs were used to collect samples from five different sites in lactation rooms at University of California, Davis and from five different sites in daycares located in Davis, California.
View Article and Find Full Text PDFCollagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues.
View Article and Find Full Text PDFWe have developed a method for the oxidation of organosilicate materials at temperatures considerably lower than those typically required for uncatalyzed oxidation. The process utilizes a combustible fuel delivered to the surface in an oxidizing environment to locally oxidize materials with carbon-silicon bonds. It also provides a level of control that cannot be achieved through standard high-energy top-to-bottom oxidative procedures such as UV-ozone and O2 plasmas.
View Article and Find Full Text PDFThe molecular basis of nonlinear optical (NLO) chiral effects in the amide I region of type I collagen was investigated using sum-frequency generation vibrational spectroscopy; chiral and achiral tensor elements were separated using different input/output beam polarization conditions. Spectra were obtained from native rat tail tendon (RTT) collagen and from cholesteric liquid crystal-like (LC) type I collagen films. Although RTT and LC collagen both possess long-range order, LC collagen lacks the complex hierarchical organization of RTT collagen.
View Article and Find Full Text PDFPhotoswitchable spiropyran has been conjugated to the crowned ring system DO3A, which improves its solubility in dipolar and polar media and stabilizes the merocyanine isomer. Adding the lanthanide ion gadolinium(III) to the macrocyclic ring system leads to a photoresponsive magnetic resonance imaging contrast agent that displays an increased spin-lattice relaxation time (T₁) upon visible light stimulation. In this work, the photoresponse of this photochromic molecule to weak light illumination using blue and green light emitting diodes was investigated, simulating the emission spectra from bioluminescent enzymes.
View Article and Find Full Text PDFIt is demonstrated that surface plasmon sensing can be performed in the shot-noise-limited regime to resolve index of refractive changes on the order of 10/√Hz at input powers of 1 mW. This improved resolution is achieved by using active electronic noise cancelling to suppress laser intensity noise and a wavelength that maximizes sensitivity to index of refraction changes occurring at an interface. The resolution of the system is experimentally demonstrated by measuring the refractive index change of air in response to pressure changes.
View Article and Find Full Text PDFA novel signal processing algorithm for quantifying structural disorder in biological tissue using second harmonic generation (SHG) imaging is described. Both the magnitude and the pattern of disorder in collagenous tissues can be determined with this method. Mathematical models are used to determine the range of disordered states over which the algorithm can be used, because highly disordered biological samples do not generate second harmonic signals.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2007
Spectral moment invariants (SMIs) are applied, for what we believe to be the first time, to second-harmonic-generation data obtained from biological samples. This method can be used to identify the presence of structural abnormalities in collagenous tissues and also to quantify the extent of the abnormality through analysis of textural deterioration. SMIs are not affected by potentially confounding factors, such as the structural heterogeneity in biological subjects, variability in scan conditions, and differences in scanning techniques.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2007
Moment invariants previously developed for the analysis of two-dimensional patterns and objects regardless of orientation, scale, and position are extended to the Fourier transform domain to quantify signatures of textures in the power spectrum of images. The moment invariants of the power spectrum, which we call spectral moment invariants (SMIs), systematically extract rotation- and scale-invariant texture features by complex spectral moments instead of by performing ad hoc measurements of the shape of the two-dimensional power spectrum as do most of the existing Fourier transform domain methods. To our knowledge, the method of using SMIs to quantify texture features is the first to extract invariant texture information directly from the Fourier spectrum.
View Article and Find Full Text PDFThe molecular origins of second-order nonlinear effects in type I collagen fibrils have been identified with sum-frequency generation vibrational spectroscopy. The dominant contributing molecular groups are: 1), the methylene groups associated with a Fermi resonance between the fundamental symmetric stretch and the bending overtone of methylene; and 2), the carbonyl and peptide groups associated with the amide I band. The noncentrosymmetrically aligned methylene groups are characterized by a distinctive tilt relative to the axis perpendicular to the main axis of the collagen fiber, a conformation producing a strong achiral contribution to the second-order nonlinear effect.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
September 2007
A probe was developed to detect biomolecular binding events at a liquid-solid interface in the microwave regime in real time and without using fluorescence labels. The probe consists of a coplanar transmission line (CTL) fabricated on a glass slide that can detect dielectric changes in close proximity of the interface. The CTL geometry concentrates the electric flux density in the gap region between the signal and ground electrodes and makes it very sensitive to permittivity changes at the liquid-solid interface.
View Article and Find Full Text PDF