Objective: Parkinson's disease (PD) patients may be categorized into tremor-dominant (TD) and postural-instability and gait disorder (PIGD) motor phenotypes, but the dynamical aspects of subthalamic nucleus local field potentials (STN-LFP) and the neural correlates of this phenotypical classification remain unclear.
Methods: 35 STN-LFP (20 PIGD and 15 TD) were investigated through continuous wavelet transform and machine-learning-based methods. The beta oscillation - the main band associated with motor impairment in PD - dynamics was characterized through beta burst parameters across phenotypes and burst intervals under specific proposed criteria for optimal burst threshold definition.
Parkinson's disease (PD) is clinically heterogeneous across patients and may be classified in three motor phenotypes: tremor dominant (TD), postural instability and gait disorder (PIGD), and undetermined. Despite the significant clinical characterization of motor phenotypes, little is known about how electrophysiological data, particularly subthalamic nucleus local field potentials (STN-LFP), differ between TD and PIGD patients. This is relevant since increased STN-LFP bandpower at α-β range (8-35 Hz) is considered a potential PD biomarker and, therefore, a critical setpoint to drive adaptive deep brain stimulation.
View Article and Find Full Text PDF