Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel.
View Article and Find Full Text PDFPlasma-derived extracellular vesicles (pEVs) are a potential source of diseased biomarker proteins. However, characterizing the pEV proteome is challenging due to its relatively low abundance and difficulties in enrichment. This study presents a streamlined workflow to identify EV proteins from cancer patient plasma using minimal sample input.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated.
View Article and Find Full Text PDFExtracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest.
View Article and Find Full Text PDFBackground: Mesenchymal stem/stromal cells (MSCs) can regenerate tissues through engraftment and differentiation but also via paracrine signalling via extracellular vesicles (EVs). Fetal-derived MSCs (fMSCs) have been shown, both in vitro and in animal studies, to be more efficient than adult MSC (aMSCs) in generating bone and muscle but the underlying reason for this difference has not yet been clearly elucidated. In this study, we aimed to systematically investigate the differences between fetal and adult MSCs and MSC-derived EVs at the phenotypic, RNA, and protein levels.
View Article and Find Full Text PDFCardiac progenitor cell (CPC)-derived small extracellular vesicles (sEVs) exhibit great potential to stimulate cardiac repair. However, the multifaceted nature of sEV heterogeneity presents a challenge in understanding the distinct mechanisms underlying their regenerative abilities. Here, a dual-step multimodal flowthrough and size-exclusion chromatography method was applied to isolate and separate CPC-derived sEV subpopulations to study the functional differences related to cardiac repair responses.
View Article and Find Full Text PDFTumor-derived extracellular vesicles (EVs) have been associated with immune evasion and tumor progression. We show that the RNA-sensing receptor RIG-I within tumor cells governs biogenesis and immunomodulatory function of EVs. Cancer-intrinsic RIG-I activation releases EVs, which mediate dendritic cell maturation and T cell antitumor immunity, synergizing with immune checkpoint blockade.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins.
View Article and Find Full Text PDFCutaneous squamous cell carcinoma (cSCC) is a fast-increasing cancer with metastatic potential. Extracellular vesicles (EVs) are small membrane-bound vesicles that play important roles in intercellular communication, particularly in the tumor microenvironment (TME). Here we report that cSCC cells secrete an increased number of EVs relative to normal human epidermal keratinocytes (NHEKs) and that interfering with the capacity of cSCC to secrete EVs inhibits tumor growth in vivo in a xenograft model of human cSCC.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EV) are cell-derived vesicles released by all cells in health and disease. Accordingly, EVs are also released by cells in acute myeloid leukemia (AML), a hematologic malignancy characterized by uncontrolled growth of immature myeloid cells, and these EVs likely carry markers and molecular cargo reflecting the malignant transformation occurring in diseased cells. Monitoring antileukemic or proleukemic processes during disease development and treatment is essential.
View Article and Find Full Text PDFFlow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells.
View Article and Find Full Text PDFExtracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years.
View Article and Find Full Text PDFExtracellular Vesicles (EVs) are membranous vesicles produced by all cells under physiological and pathological conditions. In hematological malignancies, tumor-derived EVs might reprogram the bone marrow environment, suppress antileukemic immunity, mediate drug resistance and interfere with immunotherapies. EVs collected from the serum of leukemic samples might correlate with disease stage, drug-/immunological resistance, or might correlate with antileukemic immunity/immune response.
View Article and Find Full Text PDFExtracellular vesicles (EVs) of various types are released or shed from all cells. EVs carry proteins and contain additional protein and nucleic acid cargo that relates to their biogenesis and cell of origin. EV cargo in liquid biopsies is of widespread interest owing to its ability to provide a retrospective snapshot of cell state at the time of EV release.
View Article and Find Full Text PDFExtracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are released by all cells into the extracellular matrix and body fluids, where they play important roles in intercellular communication and matrix remodeling in various pathological conditions. Malignant pleural mesothelioma (MPM) is a primary tumor of mesothelial origin, predominantly related to asbestos exposure. The detection of MPM at an early stage and distinguishing it from benign conditions and metastatic adenocarcinomas (AD) is sometimes challenging.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are nanosized cell-derived vesicles produced by all cells, which provide a route of intercellular communication by transmitting biological cargo. While EVs offer promise as therapeutic agents, the molecular mechanisms of EV biogenesis are not yet fully elucidated, in part due to the concurrence of numerous interwoven pathways which give rise to heterogenous EV populations in vitro. The equilibrium between the EV-producing pathways is heavily influenced by factors in the extracellular environment, in such a way that can be taken advantage of to boost production of engineered EVs.
View Article and Find Full Text PDFExtracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) represents the most aggressive form of pulmonary fibrosis (PF) and is a highly debilitating disorder with a poorly understood etiology. The lung epithelium seems to play a critical role in the initiation and progression of the disease. A repeated injury of lung epithelial cells prompts type II alveolar cells to secrete pro-fibrotic cytokines, which induces differentiation of resident mesenchymal stem cells into myofibroblasts, thus promoting aberrant deposition of extracellular matrix (ECM) and formation of fibrotic lesions.
View Article and Find Full Text PDF