Publications by authors named "Andre Ferraz"

The demand for greener energy sources necessitates the development of more efficient processes. Lignocellulosic biomass holds significant potential for biofuels production, but improvements in its enzymatic degradation are required to mitigate the susceptibility of enzymes by reaction products and pretreatment impurities. In this work, two cellobiohydrolases (CBHs) from the basidiomycete Phanerochaete chrysosporium (PcCel7C and PcCel7D) were heterologously expressed, characterized, and analyzed in the presence of their products (glucose and cellobiose) and harmful compounds commonly found in industrial processes (phenolics), as well as their adsorption to lignin and cellulose.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to estimate growth curves and genetic parameters for Nellore cattle in the Pantanal region of Brazil using random regression methodology on a large dataset of calf weights.
  • The research considered various fixed effects, including sex, year of birth, and environmental factors, and showed that calves from the dry season had higher average weights compared to those from other seasons.
  • Results revealed high direct heritability estimates for growth traits (0.35 to 0.75) and low maternal heritability estimates (0.03 to 0.08), suggesting that the random regression approach can help improve selective breeding strategies for future generations.
View Article and Find Full Text PDF

Laccase isoforms from basidiomycetes exhibit a superior redox potential compared to commercially available laccases obtained from ascomycete fungi, rendering them more reactive toward mono-substituted phenols and polyphenolic compounds. However, basidiomycetes present limitations for large-scale culture in liquid media, restraining the current availability of laccases from this fungal class. To advance laccase production from basidiomycetes, a newly designed 14-L low-shear aerated and agitated bioreactor provided enzyme titers up to 23.

View Article and Find Full Text PDF

The aim of this experiment was to evaluate growth, body development and ingestive behavior of Nelore and crossbred heifers. Twenty-two contemporary heifers (eight Nelore, seven Nelore × Angus (½ Angus) and seven Nelore × Pantaneiro (½ Pantaneiro) crosses) were evaluated. The variables evaluated were weight, subcutaneous fat thickness [assessed by ultrasound in the longissimus dorsi (SFT) and biceps femoris (SFTP8)] morphometric measures and ingestive behavior (determined between 7 am and 5 pm).

View Article and Find Full Text PDF

Xylanase enzymes are useful to fractionate plant biomass, producing xylan, xylooligosaccharides (XOS), and antioxidant-derived XOS. In a biorefinery, pretreated biomass can be digested with xylanase prior to cellulose saccharification, enhancing the product portfolio in the process. With this vision, this study highlighted a wide range of new products attainable from alkaline-sulfite-pretreated sugarcane bagasse by treatments with endo-xylanase under controlled conditions.

View Article and Find Full Text PDF

Unlabelled: Alkaline sulfite pretreated sugarcane bagasse was enzymatically hydrolyzed in a packed-bed column reactor and a bubble column reactor was evaluated to produce ethanol from the hydrolysate. Initial solid loadings of 9-16% were used in column reactor in the hydrolysis step, and the use of lower value (9%) resulted in 41 g L of glucose in the hydrolysate, corresponding to 87% of cellulose hydrolysis yield. This yield was reduced to 65% for a solid loading of 16%, corresponding to a glucose concentration of 54 g L.

View Article and Find Full Text PDF

The purification of hydroxycinnamic acids [-coumaric acid (CA) and ferulic acid (FA)] from grass cell walls requires high-cost processes. Feedstocks with increased levels of one hydroxycinnamate in preference to the other are therefore highly desirable. We identified and conducted expression analysis for nine BAHD acyltransferase genes from sugarcane.

View Article and Find Full Text PDF

Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks.

View Article and Find Full Text PDF

Given the recent outbreak of Sars-CoV-2, several countries started to seek different strategies to control contamination and minimize fatalities, which are usually the primary objectives for all strategies. Secondary objectives are related to economic factors, therefore ensuring that society would be able is to keep its essential activities and avoid supply disruptions. This paper presents an application of anonymized mobile phone users' location data to estimate population flow amongst cities with an origin-destination matrix.

View Article and Find Full Text PDF

EgPHI-1 is a member of PHI-1/EXO/EXL protein family. Its overexpression in tobacco resulted in changes in biomass partitioning, xylem fiber length, secondary cell wall thickening and composition, and lignification. Here, we report the functional characterization of a PHOSPHATE-INDUCED PROTEIN 1 homologue showing differential expression in xylem cells from Eucalyptus species of contrasting phenotypes for wood quality and growth traits.

View Article and Find Full Text PDF

The ability of white-rot fungi to degrade polysaccharides in lignified plant cell walls makes them a suitable reservoir for CAZyme prospects. However, to date, CAZymes from these species are barely studied, which limits their use in the set of choices for biomass conversion in modern biorefineries. The current work joined secretome studies of two representative white-rot fungi, and , with expression analysis of cellobiohydrolase (CBH) genes, and use of the secretomes to evaluate enzymatic conversion of simple and complex sugarcane-derived substrates.

View Article and Find Full Text PDF

Hemicellulose-rich substrates produced in the lignocellulose biorefinery context can yield macromolecular xylan structures with assorted application in the chemical industry. Xylan presents natural affinity to cellulose and its incorporation onto fibers increases the physical processability of pulp; however, current studies diverge on how molar mass affects xylan interaction with cellulose. In the current work, xylans with varied structural characteristics were prepared from alkaline-sulfite pretreated sugarcane bagasse with aid of an alkaline-active xylanase and selective precipitations using different ethanol concentrations.

View Article and Find Full Text PDF

Secretome evaluations of lignocellulose-decay basidiomycetes can reveal new enzymes in selected fungal species that degrade specific substrates. Proteins discovered in such studies can support biorefinery development. Brown-rot (Gloeophyllum trabeum) and white-rot (Pleurotus ostreatus) fungi growing in sugarcane bagasse solid-state cultures produced 119 and 63 different extracellular proteins, respectively.

View Article and Find Full Text PDF

Background: There is no consensus on kinematics alterations during descending stairs in females with patellofemoral pain (PFP). In addition, there are no studies that have evaluated the three dimensional kinematics of the trunk, pelvis, hip, knee, and ankle using a multi-segmental model of the foot simultaneously during this task in patients with PFP and evaluated the subphases of stair descent. The objectives of this study were to compare the three dimensional kinematics of the trunk, pelvis, and lower limbs during different subphases of stair descent and identify the discriminatory capacity of the kinematic variables among women with PFP and healthy women.

View Article and Find Full Text PDF

Lignocellulosic materials are abundant, renewable and are emerging as valuable substrates for many industrial applications such as the production of second-generation biofuels, green chemicals and pharmaceuticals. However, the recalcitrance and the complexity of cell wall polysaccharides require multiple enzymes for their complete conversion to oligo- and monosaccharides. The endoglucanases from GH45 family are a small and relatively poorly studied group of enzymes with potential industrial application.

View Article and Find Full Text PDF

Background: Preparing multiple products from lignocellulosic biomass feedstock enhances the profit and sustainability of future biorefineries. Grasses are suitable feedstocks for biorefineries as they permit a variety of possible by-products due to their particular chemical characteristics and morphology. Elucidating the fate of -hydroxycinnamates (ferulates-FAs and -coumarates-CAs) and major structural components during bioprocessing helps to discriminate the sources of recalcitrance in grasses and paves the way for the recovery of -hydroxycinnamates, which have multiple applications.

View Article and Find Full Text PDF

Sugarcane bagasses from three experimental sugarcane hybrids and a mill-reference sample were used to compare the efficiency and mode of action of acid and alkaline sulfite pretreatment processes. Varied chemical loads and reaction temperatures were used to prepare samples with distinguished characteristics regarding xylan and lignin removals, as well as sulfonation levels of residual lignins. The pretreatment with low sulfite loads (5%) under acidic conditions (pH 2) provided maximum glucose yield of 70% during enzymatic hydrolysis with cellulases (10 FPU/g) and β-glucosidases (20 UI/g bagasse).

View Article and Find Full Text PDF

Background: New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis.

View Article and Find Full Text PDF

Background: The effectiveness of the enzymatic hydrolysis of cellulose in plant cell wall is strongly influenced by the access of enzymes to cellulose, which is at least in part limited by the presence of lignin. Although physicochemical treatments preceding the enzymatic catalysis significantly overcome this recalcitrance, the residual lignin can still play a role in the process. Lignin is suggested to act as a barrier, hindering cellulose and limiting the access of the enzymes.

View Article and Find Full Text PDF

This work evaluated sugarcane bagasse pretreatment with wood-decay fungi, producing varied patterns of biodegradation. The overall mass balance of sugars released after pretreatment and enzymatic hydrolysis indicated that a selective white-rot was necessary to provide glucose yields similar to the ones observed from leading physico-chemical pretreatment technologies. The selective white-rot Ceriporiopsis subvermispora was selective for lignin degradation in the lignocellulosic material, preserved most of the glucan fraction, and increased the cellulose digestibility of biotreated material.

View Article and Find Full Text PDF

The objective of this study was to identify, through the DNA barcode, fishable Siluriformes which were collected from the Paraguay River basin in Pantanal. It was analyzed for genetic distance calculation using the Kimura-two-model parameters and the dendrogram was builtusing the Neighbour-Joining algorithm. The average genetic distance within species, genus and families were 0.

View Article and Find Full Text PDF

Background: Glycoside hydrolases (GHs) and accessory proteins are key components for efficient and cost-effective enzymatic hydrolysis of polysaccharides in modern, biochemically based biorefineries. Currently, commercialized GHs and accessory proteins are produced by ascomycetes. However, the role of wood decay basidiomycetes proteins in biomass saccharification has not been extensively pursued.

View Article and Find Full Text PDF

Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials.

View Article and Find Full Text PDF

Background: Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory).

View Article and Find Full Text PDF