Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes.
View Article and Find Full Text PDFThe MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients.
View Article and Find Full Text PDFmiR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells.
View Article and Find Full Text PDFBackground: Simultaneous isolation of nucleic acids and proteins from a single biological sample facilitates meaningful data interpretation and reduces time, cost and sampling errors. This is particularly relevant for rare human and animal specimens, often scarce, and/or irreplaceable. TRIzol(®) and TRIzol(®)LS are suitable for simultaneous isolation of RNA, DNA and proteins from the same biological sample.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are aberrantly expressed in human cancer and involved in the (dys)regulation of cell survival, proliferation, differentiation and death. Specifically, miRNA-143 (miR-143) is down-regulated in human colon cancer. In the present study, we evaluated the role of miR-143 overexpression on the growth of human colon carcinoma cells xenografted in nude mice (immunodeficient mouse strain: N: NIH(s) II-nu/nu).
View Article and Find Full Text PDF