Publications by authors named "Andre E Merbach"

Mendeleev in his first publication ordered the chemical elements following an apparent periodicity of properties such as atomic volume and valence. The reactivity of the elements was only studied systematically many years later. To illustrate the systematic variation of kinetics across the periodic table we compare water residence times for monoatomic ions in aqueous solution.

View Article and Find Full Text PDF

The syntheses, single crystal X-ray structures, and magnetic properties of the homometallic μ₃-oxo trinuclear clusters [Fe₃(μ₃-O)(μ-O₂CCH₃)₆(4-Phpy)₃](ClO₄) (1) and [Fe₃(μ₃-O)(μ-O₂CAd)₆(4-Mepy)₃](NO₃) (2) are reported (Ad = adamantane). The persistence of the trinuclear structure within 1 and 2 in CD₂Cl₂ and C₂D₂Cl₄ solutions in the temperature range 190-390 K is demonstrated by ¹H NMR. An equilibrium between the mixed pyridine clusters [Fe₃(μ₃-O)(μ-O₂CAd)₆(4-Mepy)(3-x)(4-Phpy)(x)](NO₃) (x = 0, 1, 2, 3) with a close to statistical distribution of these species is observed in CD₂Cl₂ solutions.

View Article and Find Full Text PDF

The isomerization dynamics of five labile octahedral Co(II) compounds have been investigated by variable temperature and pressure (1)H and (19)F NMR spectroscopy in dichloromethane solution. The X-ray crystal structure of the two tris-chelates, [Co(HFA)(2)bpic] (1) and [Co(TTFA)(2)bpy] (2), show a distorted octahedral arrangement of the 4 oxygen and 2 nitrogen donor atoms, with bidentate ligand bite angles smaller than 90 degrees. On the other hand, in the three bis-chelates, trans(N)-[Co(HFA)(2)(CH(3)py)(2)](3), cis(N)-cis(CF(3))-trans(S)-[Co(TTFA)(2)(CH(3)py)(2)](4), and trans(N)-trans(CF(3))-[Co(TTFA)(2)(CF(3)py)(2)](5), the replacement of the bidentate nitrogen donor ligands by two monodentate Rpy ligands leads to relaxed structures with almost regular octahedral arrangements of the donor atoms (HFA = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato anion; TTFA = 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato anion; bpy = 2,2'-bipyridine; bpic = 4,4'-dimethyl-2,2'-bipyridine).

View Article and Find Full Text PDF

The syntheses and single crystal X-ray structural analysis of five novel hetero- and homometallic mu 3-oxo trinuclear cluster with the formula [Fe (III) 2M (II)(mu 3-O)(mu-O 2CCH 3) 6(4-Rpy) 3]. x(4-Rpy). y(CH 3CN) where R = Ph for 1(Fe 2Mn), 2(Fe 2Fe), 3(Fe 2Co), 4(Fe 2Ni) and R = CF 3 for 5(Fe 2Co), are reported.

View Article and Find Full Text PDF

Gd(3)L is a trinuclear Gd(3+) complex of intermediate size, designed for contrast agent applications in high field magnetic resonance imaging (H(12)L is based on a trimethylbenzene core bearing three methylene-diethylenetriamine- N,N,N'',N''-tetraacetate moieties). Thanks to its appropriate size, the presence of two inner sphere water molecules and a fast water exchange, Gd(3)L has remarkable proton relaxivities at high magnetic field (r(1) = 10.2 vs 3.

View Article and Find Full Text PDF

A novel ligand, H(12)L, based on a trimethylbenzene core bearing three methylenediethylenetriamine-N,N,N'',N''-tetraacetate moieties (-CH(2)DTTA(4-)) for Gd(3+) chelation has been synthesized, and its trinuclear Gd(3+) complex [Gd(3)L(H(2)O)(6)](3-) investigated with respect to MRI contrast agent applications. A multiple-field, variable-temperature (17)O NMR and proton relaxivity study on [Gd(3)L(H(2)O)(6)](3-) yielded the parameters characterizing water exchange and rotational dynamics. On the basis of the (17)O chemical shifts, bishydration of Gd(3+) could be evidenced.

View Article and Find Full Text PDF

With their nanoscalar, superparamagnetic Gd(3+)-ion clusters (1 x 5 nm) confined within ultrashort (20-80 nm) single-walled carbon nanotube capsules, gadonanotubes are high-performance T1-weighted contrast agents for magnetic resonance imaging (MRI). At 1.5 T, 37 degrees C, and pH 6.

View Article and Find Full Text PDF

A multiple-frequency (9.4-325 GHz) and variable-temperature (276-320 K) electron paramagnetic resonance (EPR) study on low molecular weight gadolinium(III) complexes for potential use as magnetic resonance imaging (MRI) contrast agents has been performed. Peak-to-peak linewidths Delta Hpp and central magnetic fields have been analyzed within the Redfield approximation taking into account the static zero-field splitting (ZFS) up to the sixth order and the transient ZFS up to the second order.

View Article and Find Full Text PDF

Generation 4 polyamidoamine (PAMAM) and, for the first time, hyperbranched poly(ethylene imine) or polyglycerol dendrimers have been loaded with Gd3+ chelates, and the macromolecular adducts have been studied in vitro and in vivo with regard to MRI contrast agent applications. The Gd3+ chelator was either a tetraazatetracarboxylate DOTA-pBn4- or a tetraazatricarboxylate monoamide DO3A-MA3- unit. The water exchange rate was determined from a 17O NMR and 1H Nuclear Magnetic Relaxation Dispersion study for the corresponding monomer analogues [Gd(DO3A-AEM)(H2O)] and [Gd(DOTA-pBn-NH2)(H2O)]- (kex298=3.

View Article and Find Full Text PDF

Two new macrocyclic DOTA-like chelates containing one phosphonate pendant arm were synthesised as potential contrast agents for MRI (magnetic resonance imaging). The chelates bind to the lanthanide(III) in an octadentate manner, via four nitrogen atoms, three carboxylate and one phosphonate oxygen atoms. Solution structures of [Ln(do3ap(OEt2))(H(2)O)] and [Ln(do3ap(OEt))(H(2)O)](-) were studied using (31)P and (1)H NMR spectroscopy and SAP (square-antiprismatic)/TSAP (twisted square-antiprismatic) isomerism was observed.

View Article and Find Full Text PDF

The water exchange process on fac-[(CO)3Mn(H2O)3]+ and fac-[(CO)3Tc(H2O)3]+ was kinetically investigated by 17O NMR as a function of the acidity, temperature, and pressure. Up to pH 6.3 and 4.

View Article and Find Full Text PDF

A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere.

View Article and Find Full Text PDF

Gd(III) (S = 7/2) polyaminocarboxylates, used as contrast agents for Magnetic Resonance Imaging (MRI), were studied in frozen solutions by High-Frequency-High-Field Electron Paramagnetic Resonance (HF-EPR). EPR spectra recorded at 240 GHz and temperatures below 150 K allowed the direct and straightforward determination of parameters governing the strength of zero-field splitting (ZFS). For the first time, a correlation has been established between the sign of the axial ZFS parameter, D, and the nature of the chelating ligand in Gd(III) complexes: positive and negative signs have been observed for acyclic and macrocyclic complexes, respectively.

View Article and Find Full Text PDF

We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.

View Article and Find Full Text PDF

The pH-dependent water-exchange rates of [(CO)2(NO)Re(H2O(cis))2(H2O(trans))]2+ (1) in aqueous media were investigated by means of 17O NMR spectroscopy at 298 K. Because of the low pK(a) value found for 1 (pK(a) = 1.4 +/- 0.

View Article and Find Full Text PDF

A combined variable-temperature and multiple field 17O NMR, EPR and NMRD study has been performed for the first time on gadolinium(III) complexes of cryptand ligands, L1 and L2, where L1 contains three 2,2'-bipyridine units ([bpy.bpy.bpy]) and L2 is the disubstituted methyl ester derivative of L1.

View Article and Find Full Text PDF

The heterotritopic ligand [bpy(DTTA)2]8- has two diethylenediamine-tetraacetate units for selective lanthanide(III) coordination and one bipyridine function for selective Fe(II) coordination. In aqueous solution and in the presence of these metals, the ligand is capable of self-assembly to form a rigid supramolecular metallostar structure, [Fe[Gd2bpy(DTTA)2(H2O)4]3]4-. We report here the physicochemical characterization of the dinuclear complex [Gd2bpy(DTTA)2(H2O)4]2- and the metallostar [Fe[Gd2bpy(DTTA)2(H2O)4]3]4- with regard to potential MRI contrast agent applications.

View Article and Find Full Text PDF

We report the synthesis and characterization of the novel ligand H(5)EPTPA-C(16) ((hydroxymethylhexadecanoyl ester)ethylenepropylenetriaminepentaacetic acid). This ligand was designed to chelate the Gd(III) ion in a kinetically and thermodynamically stable way while ensuring an increased water exchange rate (kappa(ex)) on the Gd(III) complex owing to steric compression around the water-binding site. The attachment of a palmitic ester unit to the pendant hydroxymethyl group on the ethylenediamine bridge yields an amphiphilic conjugate that forms micelles with a long tumbling time (tau(R)) in aqueous solution.

View Article and Find Full Text PDF

In the objective of optimizing water exchange rate on stable, nine-coordinate, monohydrated Gd(III) poly(amino carboxylate) complexes, we have prepared monopropionate derivatives of DOTA4- (DO3A-Nprop4-) and DTPA5- (DTTA-Nprop5-). A novel ligand, EPTPA-BAA(3-), the bisamylamide derivative of ethylenepropylenetriamine-pentaacetate (EPTPA5-) was also synthesized. A variable temperature 17O NMR study has been performed on their Gd(III) complexes, which, for [Gd(DTTA-Nprop)(H2O)]2- and [Gd(EPTPA-BAA)(H2O)] has been combined with multiple field EPR and NMRD measurements.

View Article and Find Full Text PDF

A combined proton relaxivity and dynamic light scattering study has shown that aggregates formed in aqueous solution of water-soluble gadofullerenes can be disrupted by addition of salts. The salt content of fullerene-based materials will strongly influence properties related to aggregation phenomena, therefore, their behavior in biological or medical applications. In particular, the relaxivity of gadofullerenes decreases dramatically with phosphate addition.

View Article and Find Full Text PDF

Two novel dinuclear Gd(III) complexes have been synthesized, based on a xylene core substituted with diethylenetriamine-N,N,N'',N''-tetraacetate (DTTA) chelators in para or meta position. The complexes [Gd2(pX(DTTA)2)(H2O)4]2- and [Gd2(mX(DTTA)2)(H2O)4]2- both exhibit high complex stability (log K(GdL) = 19.1 and 17.

View Article and Find Full Text PDF

Chiral, bifunctional poly(amino carboxylate) ligands are commonly used for the synthesis of macromolecular, Gd(III)-based MRI contrast agents, prepared in the objective of increasing relaxivity or delivering the paramagnetic Gd(III) to a specific site (targeting). Complex formation with such ligands results in two diastereomeric forms for the complex which can be separated by HPLC. We demonstrated that the diastereomer ratio for Ln(III) DTPA derivatives (approximately 60:40) remains constant throughout the lanthanide series, in contrast to Ln(III) EPTPA derivatives, where it varies as a function of the cation size with a maximum for the middle lanthanides (DTPA(5-) = diethylenetriaminepentaacetate; EPTPA(5-) = ethylenepropylenetriaminepentaacetate).

View Article and Find Full Text PDF

Rigid chelates of high-molecular weight, [M(tpy-DTTA)2]6- (M = Fe, Ru), are obtained upon self-assembly around one M(II) ion of two terpyridine-based molecules substituted in the 4'-position with the polyaminocarboxylate diethylenetriamine-N,N,N'',N''-tetraacetate, tpy-DTTA4-. The protonation constants of tpy-DTTA4- (log K1 = 8.65(4), log K2 = 7.

View Article and Find Full Text PDF

The EPTPA5) chelate, which ensures fast water exchange in GdIII complexes, has been coupled to three different generations (5, 7, and 9) of polyamidoamine (PAMAM) dendrimers through benzylthiourea linkages (H5EPTPA = ethylenepropylenetriamine-N,N,N',N'',N''-pentaacetic acid). The proton relaxivities measured at pH 7.4 for the dendrimer complexes G5-(GdEPTPA)111, G7-(GdEPTPA)253 and G9-(GdEPTPA)1157 decrease with increasing temperature, indicating that, for the first time for dendrimers, slow water exchange does not limit relaxivity.

View Article and Find Full Text PDF