Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications.
View Article and Find Full Text PDFJ Funct Biomater
February 2021
Electrospun ultrathin fibrous scaffold filed with synthetic nanohydroxyapatite (nHAp) and graphene nanoribbons (GNR) has bioactive and osteoconductive properties and is a plausible strategy to improve bone regeneration. Poly(butylene-adipate-co-terephthalate) (PBAT) has been studied as fibrous scaffolds due to its low crystallinity, faster biodegradability, and good mechanical properties; however, its potential for in vivo applications remains underexplored. We proposed the application of electrospun PBAT with high contents of incorporated nHAp and nHAp/GNR nanoparticles as bone grafts.
View Article and Find Full Text PDFPoly (lactic acid) (PLA) has been increasingly used in cutaneous tissue engineering due to its low cost, ease of handling, biodegradability, and biocompatibility, as well as its ability to form composites. However, these polymers possess a structure with nanoporous that mimic the cellular environment. In this study, nanocomposites are prepared using PLA and titanium dioxide (TiO) (10 and 35%-w/w) nanoparticles that also function as an active anti-scarring agent.
View Article and Find Full Text PDFBioprinting technology has emerged as an important approach to bone and cartilage tissue engineering applications, because it allows the printing of scaffolds loaded with various components, such as cells, growth factors, or drugs. In this context, the bone has a very complex architecture containing highly vascularized and calcified tissues, while cartilage is avascular and has low cellularity and few nutrients. Owing to this complexity, the repair and regeneration of these tissues are highly challenging.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2018
The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance.
View Article and Find Full Text PDF