As the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi.
View Article and Find Full Text PDFBiotrophic plant pathogens secrete effector proteins to manipulate the host physiology. Effectors suppress defenses and induce an environment favorable to disease development. Sequence-based prediction of effector function is impeded by their rapid evolution rate.
View Article and Find Full Text PDFBackground: The unfolded protein response (UPR) is a highly conserved process in eukaryotic organisms that plays a crucial role in adaptation and development. While the most ubiquitous components of this pathway have been characterized, current efforts are focused on identifying and characterizing other UPR factors that play a role in specific conditions, such as developmental changes, abiotic cues, and biotic interactions. Considering the central role of protein secretion in plant pathogen interactions, there has also been a recent focus on understanding how pathogens manipulate their host's UPR to facilitate infection.
View Article and Find Full Text PDFDuring infection pathogens secrete small molecules, termed effectors, to manipulate and control the interaction with their specific hosts. Both the pathogen and the plant are under high selective pressure to rapidly adapt and co-evolve in what is usually referred to as molecular arms race. Components of the host's immune system form a network that processes information about molecules with a foreign origin and damage-associated signals, integrating them with developmental and abiotic cues to adapt the plant's responses.
View Article and Find Full Text PDFWe investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought.
View Article and Find Full Text PDFThe threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component.
View Article and Find Full Text PDF