Publications by authors named "Andras Varadi"

Background: Pseudoxanthoma elasticum (PXE), a monogenic disorder resulting in calcification affecting the skin, eyes and peripheral arteries, is caused by mutations in the ABCC6 gene, and is associated with low plasma inorganic pyrophosphate (PP). It is unknown how ABCC6 genotype affects plasma PP.

Methods: We studied the association of ABCC6 genotype (192 patients with biallelic pathogenic ABCC6 mutations) and PP levels, and its association with the severity of arterial and ophthalmological phenotypes.

View Article and Find Full Text PDF

The leaves of (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed and pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway.

View Article and Find Full Text PDF

Pseudoxanthoma elasticum (PXE; OMIM 264800) is a rare heritable multisystem disorder, characterized by ectopic mineralization affecting elastic fibres in the skin, eyes and the cardiovascular system. Skin findings often lead to early diagnosis of PXE, but currently, no specific treatment exists to counteract the progression of symptoms. PXE belongs to a group of Mendelian calcification disorders linked to pyrophosphate metabolism, which also includes generalized arterial calcification of infancy (GACI) and arterial calcification due to CD73 deficiency (ACDC).

View Article and Find Full Text PDF

Objective: The pathogenesis of calcinosis cutis, a disabling complication of SSc, is poorly understood and effective treatments are lacking. Inorganic pyrophosphate (PPi) is a key regulator of ectopic mineralization, and its deficiency has been implicated in ectopic mineralization disorders. We therefore sought to test the hypothesis that SSc may be associated with reduced circulating PPi, which might play a pathogenic role in calcinosis cutis.

View Article and Find Full Text PDF

Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset.

View Article and Find Full Text PDF

Calcification of various tissues is a significant health issue associated with aging, cancer and autoimmune diseases. There are both environmental and genetic factors behind this phenomenon and understanding them is essential for the development of efficient therapeutic approaches. Pseudoxanthoma elasticum (PXE) is a rare genetic disease, a prototype for calcification disorders, resulting from the dysfunction of ABCC6, a transport protein found in the membranes of cells.

View Article and Find Full Text PDF

Controlling receptor functional selectivity profiles for opioid receptors is a promising approach for discovering safer analgesics; however, the structural determinants conferring functional selectivity are not well understood. Here, we used crystal structures of opioid receptors, including the recently solved active state kappa opioid complex with , to rationally design novel mixed mu (MOR) and kappa (KOR) opioid receptor agonists with reduced arrestin signaling. Analysis of structure-activity relationships for new analogs points to a region between transmembrane 5 (TM5) and extracellular loop (ECL2) as key for modulation of arrestin recruitment to both MOR and KOR.

View Article and Find Full Text PDF

Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (Ank) and in CMD patients.

View Article and Find Full Text PDF

Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths.

View Article and Find Full Text PDF

Mutations in the ABCC6 gene result in calcification diseases such as pseudoxanthoma elasticum or Generalized Arterial Calcification of Infancy. Generation of antibodies recognizing an extracellular (EC) epitope of ABCC6 has been hampered by the short EC segments of the protein. To overcome this limitation, we immunized bovine FcRn transgenic mice exhibiting an augmented humoral immune response with Human Embryonic Kidney 293 cells cells expressing human ABCC6 (hABCC6).

View Article and Find Full Text PDF
Article Synopsis
  • ABC transporters are a superfamily that move a wide range of substances across cell membranes, combining conserved ATP-binding features with diverse transmembrane structures.
  • The different structural forms of the transmembrane domains (TMDs) suggest that these transporters evolved by pairing ancient motor domains with various mechanical systems.
  • A new classification for ABC transporters is proposed that emphasizes structural similarities in their TMDs for better categorization.
View Article and Find Full Text PDF

Trauma-induced calcification is the pathological consequence of complex injuries which often affect the central nervous system and other parts of the body simultaneously. We demonstrated by an animal model recapitulating the calcification of the above condition that adrenaline transmits the stress signal of brain injury to the calcifying tissues. We have also found that although the level of plasma pyrophosphate, the endogenous inhibitor of calcification, was normal in calcifying animals, it could not counteract the acute calcification.

View Article and Find Full Text PDF

Accumulation of cytotoxic lipofuscin bisretinoids may contribute to atrophic age-related macular degeneration (AMD) pathogenesis. Retinal bisretinoid synthesis depends on the influx of serum all--retinol () delivered via a tertiary retinol binding protein 4 (RBP4)-transthyretin (TTR)-retinol complex. We previously identified selective RBP4 antagonists that dissociate circulating RBP4-TTR-retinol complexes, reduce serum RBP4 levels, and inhibit bisretinoid synthesis in models of enhanced retinal lipofuscinogenesis.

View Article and Find Full Text PDF

Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3'-iodobenzoylnaltrexamide (IBNtxA).

View Article and Find Full Text PDF

The COVID-19 epidemic hit everyone, professionals and civilians alike. The possibility of a worldwide pandemic has long been theorized by epidemiologists, infectologists on the one hand, and sociologists and behavioral scientists dealing with communication and social habits on the other. Yet, faced with real-time events, daily infections and mortality statistics, almost everyone feels uninformed or disturbingly inexperienced.

View Article and Find Full Text PDF

The present work represents the in vitro (potency, affinity, efficacy) and in vivo (antinociception, constipation) opioid pharmacology of the novel compound 14-methoxycodeine-6--sulfate (14-OMeC6SU), compared to the reference compounds codeine-6--sulfate (C6SU), codeine and morphine. Based on in vitro tests (mouse and rat vas deferens, receptor binding and [S]GTPγS activation assays), 14-OMeC6SU has µ-opioid receptor-mediated activity, displaying higher affinity, potency and efficacy than the parent compounds. In rats, 14-OMeC6SU showed stronger antinociceptive effect in the tail-flick assay than codeine and was equipotent to morphine, whereas C6SU was less efficacious after subcutaneous (s.

View Article and Find Full Text PDF

Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics.

View Article and Find Full Text PDF

Purpose: Sigma-1 receptors (S1Rs) are overexpressed in almost all human cancers, especially in breast cancers. 1-(4-Iodophenyl)-3-(2-adamantyl)guanidine (IPAG) is a validated high-affinity S1R antagonist. The objective of the current study is to evaluate the potential of iodine-124-labeled IPAG ([I]IPAG) to image S1R-overexpressing tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Retinol-binding protein 4 (RBP4) is a blood transporter for vitamin A and is linked to various health issues like diabetes and obesity.
  • New research shows that increasing RBP4 in fat cells can lead to liver fat accumulation in mice.
  • The study introduces new RBP4 antagonists that significantly lower RBP4 levels and show promise for treating nonalcoholic fatty liver disease (NAFLD) in specific mouse models.
View Article and Find Full Text PDF

A library-friendly approach to generate new scaffolds is decisive for the development of molecular probes, drug like molecules and preclinical entities. Here, we present the design and synthesis of novel heterocycles with spiro-2,6-dioxopiperazine and spiro-2,6-pyrazine scaffolds through a three-component reaction using various amino acids, ketones, and isocyanides. Screening of select compounds over fifty CNS receptors including G-protein coupled receptors (GPCRs), ion channels, transporters, and enzymes through the NIMH psychoactive drug screening program indicated that a novel spiro-2,6-dioxopyrazine scaffold, UVM147, displays high binding affinity at sigma-1 (σ) receptor in the nanomolar range.

View Article and Find Full Text PDF

Pseudoxanthoma elasticum is a heritable disease caused by ABCC6 deficiency. Patients develop ectopic calcification in skin, eyes, and vascular tissues. ABCC6, primarily found in liver and kidneys, mediates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi), a potent inhibitor of calcification.

View Article and Find Full Text PDF

Ever since Garrod deduced the existence of inborn errors in 1901, a vast array of metabolic diseases has been identified and characterized in molecular terms. In 2018 it is difficult to imagine that there is any uncharted backyard left in the metabolic disease landscape. Nevertheless, it took until 2013 to identify the cause of a relatively frequent inborn error, pseudoxanthoma elasticum (PXE), a disorder resulting in aberrant calcification.

View Article and Find Full Text PDF

Methotrexate (MTX) is a widely used chemotherapeutic agent, immune suppressant and antimalarial drug. It is a substrate of several human ABC proteins that confer multidrug resistance to cancer cells and determine compartmentalization of a wide range of physiological metabolites and endo or xenobiotics, by their primary active transport across biological membranes. The substrate specificity and tissue distribution of these promiscuous human ABC transporters show a high degree of redundancy, providing robustness to these key physiological and pharmacological processes, such as the elimination of toxins, e.

View Article and Find Full Text PDF

A primary pathological defect in the heritable eye disorder Stargardt disease is excessive accumulation of cytotoxic lipofuscin bisretinoids in the retina. Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) matches the age-dependent increase in the incidence of the atrophic (dry) form of age-related macular degeneration (AMD) and therefore may be one of several pathogenic factors contributing to AMD progression. Lipofuscin bisretinoid synthesis in the retina depends on the influx of serum retinol from the circulation into the RPE.

View Article and Find Full Text PDF