Publications by authors named "Andras Talas"

The success of prime editing depends on the prime editing guide RNA (pegRNA) design and target locus. Here, we developed machine learning models that reliably predict prime editing efficiency. PRIDICT2.

View Article and Find Full Text PDF

Streptococcus pyogenes Cas9 (SpCas9) has been employed as a genome engineering tool with a promising potential within therapeutics. However, its off-target effects present major safety concerns for applications requiring high specificity. Approaches developed to date to mitigate this effect, including any of the increased-fidelity (i.

View Article and Find Full Text PDF

Streptococcus pyogenes Cas9 (SpCas9) nuclease exhibits considerable position-dependent sequence preferences. The reason behind these preferences is not well understood and is difficult to rationalise, since the protein establishes interactions with the target-spacer duplex in a sequence-independent manner. We revealed here that intramolecular interactions within the single guide RNA (sgRNA), between the spacer and the scaffold, cause most of these preferences.

View Article and Find Full Text PDF

Several advancements have been made to SpCas9, the most widely used CRISPR/Cas genome editing tool, to reduce its unwanted off-target effects. The most promising approach is the development of increased-fidelity nuclease (IFN) variants of SpCas9, however, their fidelity has increased at the cost of reduced activity. SuperFi-Cas9 has been developed recently, and it has been described as a next-generation high-fidelity SpCas9 variant, free from the drawbacks of first-generation IFNs.

View Article and Find Full Text PDF

Prime editing is a recently developed CRISPR/Cas9 based gene engineering tool that allows the introduction of short insertions, deletions, and substitutions into the genome. However, the efficiency of prime editing, which typically achieves editing rates of around 10%-30%, has not matched its versatility. Here, we introduce the prime editor activity reporter (PEAR), a sensitive fluorescent tool for identifying single cells with prime editing activity.

View Article and Find Full Text PDF

Adenine and cytosine base editors (ABE, CBE) allow for precision genome engineering. Here, Base Editor Activity Reporter (BEAR), a plasmid-based fluorescent tool is introduced, which can be applied to report on ABE and CBE editing in a virtually unrestricted sequence context or to label base edited cells for enrichment. Using BEAR-enrichment, we increase the yield of base editing performed by nuclease inactive base editors to the level of the nickase versions while maintaining significantly lower indel background.

View Article and Find Full Text PDF

Proper functioning of the precisely controlled endolysosomal system is essential for maintaining the homeostasis of the entire cell. Tethering factors play pivotal roles in mediating the fusion of different transport vesicles, such as endosomes or autophagosomes with each other or with lysosomes. In this work, we uncover several new interactions between the endolysosomal tethering factors Rabenosyn-5 (Rbsn) and the HOPS and CORVET complexes.

View Article and Find Full Text PDF

Detailed target-selectivity information and experiment-based efficacy prediction tools are primarily available for Streptococcus pyogenes Cas9 (SpCas9). One obstacle to develop such tools is the rarity of accurate data. Here, we report a method termed 'Self-targeting sgRNA Library Screen' (SLS) for assaying the activity of Cas9 nucleases in bacteria using random target/sgRNA libraries of self-targeting sgRNAs.

View Article and Find Full Text PDF

Increased fidelity mutants of the SpCas9 nuclease constitute the most promising approach to mitigating its off-target effects. However, these variants are effective only in a restricted target space, and many of them are reported to work less efficiently when applied in clinically relevant, pre-assembled, ribonucleoprotein forms. The low tolerance to 5'-extended, 21G-sgRNAs contributes, to a great extent, to their decreased performance.

View Article and Find Full Text PDF

The widespread use of Cas12a (formerly Cpf1) nucleases for genome engineering is limited by their requirement for a rather long TTTV protospacer adjacent motif (PAM) sequence. Here we have aimed to loosen these PAM constraints and have generated new PAM mutant variants of the four Cas12a orthologs that are active in mammalian and plant cells, by combining the mutations of their corresponding RR and RVR variants with altered PAM specificities. LbCas12a-RVRR showing the highest activity was selected for an in-depth characterization of its PAM preferences in mammalian cells, using a plasmid-based assay.

View Article and Find Full Text PDF
Article Synopsis
  • - Cpf1 nucleases, part of the CRISPR system, need a specific short sequence called a protospacer adjacent motif (PAM) nearby the target DNA for their activity; the commonly used TTTV PAM is rare in higher organisms.
  • - Researchers discovered that Fn- and MbCpf1 nucleases can effectively modify mammalian genomes using a more common PAM sequence (TTN) and that these nucleases behave similarly in terms of activity and PAM preferences.
  • - By creating mutants (RVR and RR) of Fn- and MbCpf1 with altered PAM specificities, the researchers enhanced their ability to target different sequences while maintaining functionality with traditional TTTV PAMs, potentially offering broader applications for genome editing.
View Article and Find Full Text PDF

Background: The propensity for off-target activity of Streptococcus pyogenes Cas9 (SpCas9) has been considerably decreased by rationally engineered variants with increased fidelity (eSpCas9; SpCas9-HF1). However, a subset of targets still generate considerable off-target effects. To deal specifically with these targets, we generated new "Highly enhanced Fidelity" nuclease variants (HeFSpCas9s) containing mutations from both eSpCas9 and SpCas9-HF1 and examined these improved nuclease variants side by side to decipher the factors that affect their specificities and to determine the optimal nuclease for applications sensitive to off-target effects.

View Article and Find Full Text PDF

The efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene.

View Article and Find Full Text PDF

Background: Cpf1 nucleases have recently been repurposed for site-specific genome modification. Two members of the Cpf1 family, the AsCpf1 from Acidaminococcus sp. and the LbCpf1 from Lachnospiraceae bacterium were shown to induce higher indel frequencies than SpCas9 when examining four randomly-selected target sequences for each type of nuclease.

View Article and Find Full Text PDF