The behavior of single layer van der Waals (vdW) materials is profoundly influenced by the immediate atomic environment at their surface, a prime example being the myriad of emergent properties in artificial heterostructures. Equally significant are adsorbates deposited onto their surface from ambient. While vdW interfaces are well understood, our knowledge regarding atmospheric contamination is severely limited.
View Article and Find Full Text PDFIn crystalline solids, the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in "magic angle" graphene layers. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy, we map the flat band charge density of 8, 10, 14, and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2022
Graphene-covered silver nanoparticles were prepared directly on highly oriented pyrolytic graphite substrates and characterized by atomic force microscopy. UV-Vis reflectance spectroscopy was used to measure the shift in the local surface plasmon resonance (LSPR) upon exposure to acetone, ethanol, 2-propanol, toluene, and water vapor. The optical responses were found to be substance-specific, as also demonstrated by principal component analysis.
View Article and Find Full Text PDFMaterials (Basel)
October 2020
Silver nanoparticles (Ag NPs) play important roles in the development of plasmonic applications. Combining these nanoparticles with graphene can yield hybrid materials with enhanced light-matter interaction. Here, we report a simple method for the synthesis of graphene-silver nanoparticle hybrids on highly oriented pyrolytic graphite (HOPG) substrates.
View Article and Find Full Text PDFWe investigated the vapour sensing properties of different graphene-gold hybrid nanostructures. We observed the shifts in the optical spectra near the local surface plasmon resonance of the gold nanoparticles by changing the concentration and nature of the analytes (ethanol, 2-propanol, and toluene). The smaller, dome-like gold nanoparticles proved to be more sensitive to these vapours compared to slightly larger, flat nanoparticles.
View Article and Find Full Text PDFGraphene on noble-metal nanostructures constitutes an attractive nanocomposite with possible applications in sensors or energy conversion. In this work we study the properties of hybrid graphene/gold nanoparticle structures by Raman spectroscopy and scanning probe methods. The nanoparticles (NPs) were prepared by local annealing of gold thin films using a focused laser beam.
View Article and Find Full Text PDF