Publications by authors named "Andras Eke"

Analysis of brain functional connectivity (FC) could provide insight in how and why cognitive functions decline even in healthy aging (HA). Despite FC being established as fluctuating over time even in the resting state (RS), dynamic functional connectivity (DFC) studies involving healthy elderly individuals and assessing how these patterns relate to cognitive performance are yet scarce. In our recent study we showed that fractal temporal scaling of functional connections in RS is not only reduced in HA, but also predicts increased response latency and reduced task solving accuracy.

View Article and Find Full Text PDF

Dopaminergic treatment (DT), the standard therapy for Parkinson's disease (PD), alters the dynamics of functional brain networks at specific time scales. Here, we explore the scale-free functional connectivity (FC) in the PD population and how it is affected by DT. We analyzed the electroencephalogram of: (i) 15 PD patients during DT (ON) and after DT washout (OFF) and (ii) 16 healthy control individuals (HC).

View Article and Find Full Text PDF

Aging affects cognitive functions even in the absence of ongoing pathologies. The neurophysiological basis of age-related cognitive decline (CD), however, is not completely understood. Alterations in both functional brain connectivity and in the fractal scaling of neuronal dynamics have been linked to aging and cognitive performance.

View Article and Find Full Text PDF

Assessing power-law cross-correlations between a pair - or among a set - of processes is of great significance in diverse fields of analyses ranging from neuroscience to financial markets. In most cases such analyses are computationally expensive and thus carried out offline once the entire signal is obtained. However, many applications - such as mental state monitoring or financial forecasting - call for fast algorithms capable of estimating scale-free coupling in real time.

View Article and Find Full Text PDF

The human brain consists of anatomically distant neuronal assemblies that are interconnected via a myriad of synapses. This anatomical network provides the neurophysiological wiring framework for functional connectivity (FC), which is essential for higher-order brain functions. While several studies have explored the scale-specific FC, the scale-free (i.

View Article and Find Full Text PDF

Dynamic interdependencies within and between physiological systems and subsystems are key for homeostatic mechanisms to establish an optimal state of the organism. These interactions mediate regulatory responses elicited by various perturbations, such as the high-pressure baroreflex and cerebral autoregulation, alleviating the impact of orthostatic stress on cerebral hemodynamics and oxygenation. The aim of this study was to evaluate the responsiveness of the cardiorespiratory-cerebrovascular networks by capturing linear and nonlinear interdependencies to postural changes.

View Article and Find Full Text PDF

While most connectivity studies investigate functional connectivity (FC) in a scale-dependent manner, coupled neural processes may also exhibit broadband dynamics, manifesting as power-law scaling of their measures of interdependence. Here we introduce the bivariate focus-based multifractal (BFMF) analysis as a robust tool for capturing such scale-free relations and use resting-state electroencephalography (EEG) recordings of 12 subjects to demonstrate its performance in reconstructing physiological networks. BFMF was employed to characterize broadband FC between 62 cortical regions in a pairwise manner, with all investigated connections being tested for true bivariate multifractality.

View Article and Find Full Text PDF

Introduction: Alterations in narrow-band spectral power of electroencephalography (EEG) recordings are commonly reported in patients with schizophrenia (SZ). It is well established however that electrophysiological signals comprise a broadband scale-free (or fractal) component generated by mechanisms different from those producing oscillatory neural activity. Despite this known feature, it has not yet been investigated if spectral abnormalities found in SZ could be attributed to scale-free or oscillatory brain function.

View Article and Find Full Text PDF

Introduction: Investigating how the brain adapts to increased mental workload through large-scale functional reorganization appears as an important research question. Functional connectivity (FC) aims at capturing how disparate regions of the brain dynamically interact, while graph theory provides tools for the topological characterization of the reconstructed functional networks. Although numerous studies investigated how FC is altered in response to increased working memory (WM) demand, current results are still contradictory as few studies confirmed the robustness of these findings in a low-density setting.

View Article and Find Full Text PDF

Hemoglobin-based oxygen carriers (HBOCs) were developed with the aim of substituting transfusions in emergency events. However, they exhibit adverse events, such as nitric oxide (NO) scavenging, vasoactivity, enhanced platelet aggregation, presently hampering their clinical application. The impact of two prototypical PEGylated HBOCs, Euro-PEG-Hb and PEG-HbO, endowed by different oxygen affinities and hydrodynamic volumes, was assessed on the cerebrocortical parenchymal microhemodynamics, and extravasation through the blood-brain-barrier (BBB) by laser speckle contrast imaging (LSCI) method and near-infrared (NIR) imaging, respectively.

View Article and Find Full Text PDF

Dynamic functional connectivity (DFC) was established in the past decade as a potent approach to reveal non-trivial, time-varying properties of neural interactions - such as their multifractality or information content -, that otherwise remain hidden from conventional static methods. Several neuropsychiatric disorders were shown to be associated with altered DFC, with schizophrenia (SZ) being one of the most intensely studied among such conditions. Here we analyzed resting-state electroencephalography recordings of 14 SZ patients and 14 age- and gender-matched healthy controls (HC).

View Article and Find Full Text PDF

Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well.

View Article and Find Full Text PDF

Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb β subunit (βF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form.

View Article and Find Full Text PDF

Assessing the functional connectivity (FC) of the brain has proven valuable in enhancing our understanding of brain function. Recent developments in the field demonstrated that FC fluctuates even in the resting state, which has not been taken into account by the widely applied static approaches introduced earlier. In a recent study using functional near-infrared spectroscopy (fNIRS) global dynamic functional connectivity (DFC) has also been found to fluctuate according to scale-free i.

View Article and Find Full Text PDF

Fluctuations in resting-state cerebral hemodynamics show scale-free behavior over two distinct scaling ranges. Changes in such bimodal (multi) fractal pattern give insight to altered cerebrovascular or neural function. Our main goal was to assess the distribution of local scale-free properties characterizing cerebral hemodynamics and to disentangle the influence of aging on these multifractal parameters.

View Article and Find Full Text PDF

Unlabelled: Brain function is organized as a network of functional connections between different neuronal populations with connection strengths dynamically changing in time and space. Studies investigating functional connectivity (FC) usually follow a static approach when describing FC by considering the connectivity strengths constant, however a dynamic approach seems more reasonable, as this way the spatio-temporal dynamics of the underlying system can also be captured.

Objective: The scale-free, i.

View Article and Find Full Text PDF

In this study, functional near-infrared spectroscopy (fNIRS) and the graph theory approach were used to access the functional connectivity (FC) of the prefrontal cortex (PFC) in a resting state and during increased mental workload. For this very purpose, a pattern recognition-based test was developed, which elicited a strong response throughout the PFC during the test condition. FC parameters obtained during stimulation were found increased compared to those in a resting state after correlation based signal improvement (CBSI), which can attenuate those components of fNIRS signals which are unrelated to neural activity.

View Article and Find Full Text PDF

Physiological processes-such as, the brain's resting-state electrical activity or hemodynamic fluctuations-exhibit scale-free temporal structuring. However, impacts common in biological systems such as, noise, multiple signal generators, or filtering by transport function, result in multimodal scaling that cannot be reliably assessed by standard analytical tools that assume unimodal scaling. Here, we present two methods to identify breakpoints or crossovers in multimodal multifractal scaling functions.

View Article and Find Full Text PDF

This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too.

View Article and Find Full Text PDF

Analysis of task-evoked fMRI data ignores low frequency fluctuations (LFF) of the resting-state the BOLD signal, yet LFF of the spontaneous BOLD signal is crucial for analysis of resting-state connectivity maps. We characterized the LFF of resting-state BOLD signal at 11.7T in α-chloralose and domitor anesthetized rat brain and modeled the spontaneous signal as a scale-free (i.

View Article and Find Full Text PDF

We introduce the concept of spatial and temporal complexity with emphasis on how its fractal characterization for 1D, 2D or 3D hemodynamic brain signals can be carried out. Using high-resolution experimental data sets acquired in animal and human brain by noninvasive methods - such as laser Doppler flowmetry, laser speckle, near infrared, or functional magnetic resonance imaging - the spatiotemporal complexity of cerebral hemodynamics is demonstrated. It is characterized by spontaneous, seemingly random (that is disorderly) fluctuation of the hemodynamic signals.

View Article and Find Full Text PDF

This article presents a quasistatic, compartmental model of tissue-level hemodynamics and oxygenation that leads to a set of formulas, which is suitable to calculate important physiological variables from the mean tissue concentration and saturation of hemoglobin, measured by tissue spectroscopy. Dimensioned quantities are represented relative to their baseline value in the equations (relative value = perturbed/baseline). All model parameters are non-dimensional.

View Article and Find Full Text PDF