Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xl and pAkt cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner.
View Article and Find Full Text PDFThe first 1,3-dipolar cycloaddition of 2-azirines with nitrones, a straightforward approach toward the regioselective synthesis of 1,2,4,5-tetrasubstituted imidazoles, is reported. This trifluoroacetic acid-catalyzed protocol tolerates a broad range of aliphatic and aromatic substrates, offering an efficient access to highly diverse, multisubstituted imidazoles in isolated yields up to 83% under mild conditions.
View Article and Find Full Text PDFA regio- and diastereoselective 1,3-dipolar cycloaddition of 2 H-azirines with azomethine ylides generated in situ from isatins and α-amino acids has been elaborated, affording an unprecedented aziridine-fused spiro[imidazolidine-4,3'-oxindole] framework. This one-pot three-component reaction tolerates a wide range of substrates and enables the construction of highly diverse 1,3-diazaspiro[bicyclo[3.1.
View Article and Find Full Text PDFLeukemia, the malignancy of the hematopoietic system accounts for 10% of cancer cases with poor overall survival rate in adults; therefore, there is a high unmet medical need for the development of novel therapeutics. Eight imidazo[1,2-]pyrazole-7-carboxamides have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4), biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro. Imidazo[1,2-]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with different potential.
View Article and Find Full Text PDFThe synthesis and in vitro cytotoxic characteristics of new imidazo[1,2-b]pyrazole-7-carboxamides were investigated. Following a hit-to-lead optimization exploiting 2D and 3D cultures of MCF-7 human breast, 4T1 mammary gland, and HL-60 human promyelocytic leukemia cancer cell lines, a 67-membered library was constructed and the structure-activity relationship (SAR) was determined. Seven synthesized analogues exhibited sub-micromolar activities, from which compound 63 exerted the most significant potency with a remarkable HL-60 sensitivity (IC = 0.
View Article and Find Full Text PDFA sequential one-pot approach towards N,N'-disubstituted guanidines from N-chlorophthalimide, isocyanides and amines is reported. This strategy provides straightforward and efficient access to diverse guanidines in yields up to 81% through previously unprecedented N-phthaloylguanidines. This protocol also features wide substrate scope and mild conditions.
View Article and Find Full Text PDFA ZnCl-catalyzed diastereoselective Joullié-Ugi three-component reaction from 2 H-azirines, isocyanides, and carboxylic acids was established. The protocol allows the preparation of highly and diversely functionalized N-acylaziridine-2-carboxamide derivatives in up to 82% isolated yields. Moreover, the applicability of N-acylaziridines is demonstrated through a variety of transformations.
View Article and Find Full Text PDF5-Aminopyrazole-4-carbonitrile and ethyl 5-aminopyrazole-4-carboxylate, as potential trifunctional building blocks are introduced in a facile, chemo- and regioselective multicomponent assembly of imidazo[1,2-b]pyrazoles via the Groebke-Blackburn-Bienaymé reaction (GBB reaction). Besides the synthetic elaboration of a green-compatible isocyanide-based access in three-component mode, we describe an operationally simple, one-pot two-step GBB protocol for the rapid construction of a 46 membered imidazo[1,2-b]pyrazole library with yields up to 83%.
View Article and Find Full Text PDF