Phys Chem Chem Phys
August 2015
Water oxidation by Ti(OH)4 in the ground and excited states was investigated using density functional (ΔSCF, TDDFT) methods gauged by the coupled cluster (CCSD, CCSD(T)) calculations. O2 and H2 are generated in a reaction sequence that starts with Ti(OH)4 reacting with H2O. This reaction can proceed by either nucleophilic attack by H2O or by H-atom abstraction from H2O.
View Article and Find Full Text PDFEnantiomeric excess (ee) in asymmetric catalysis may be strongly dependent on the solvent. The reaction product may range from an almost racemic mixture to an ee of over 90% for different solvents. We study this phenomenon for the C-C coupling reaction between nitromethane and benzaldehyde (the Henry reaction) with cinchona thiourea as the catalyst, where solvents that are strong Lewis bases induce a high ee.
View Article and Find Full Text PDFWe investigate basis set convergence for a series of density functional theory (DFT) functionals (both hybrid and nonhybrid) and compare to coupled-cluster with single and double excitations and perturbative triples [CCSD(T)] benchmark calculations. The case studied is the energetics of the water oxidation reaction by an iridium-oxo complex. Complexation energies for the reactants and products complexes as well as the transition state (TS) energy are considered.
View Article and Find Full Text PDFWe report a theoretical study of the photoisomerization step in the operating cycle of a prototypical fluorene-based molecular rotary motor (1). The potential energy surfaces of the ground electronic state (S0) and the first singlet excited state (S1) are explored by semiempirical quantum-chemical calculations using the orthogonalization-corrected OM2 Hamiltonian in combination with a multireference configuration interaction (MRCI) treatment. The OM2/MRCI results for the S0 and S1 minima of the relevant 1-P and 1-M isomers and for the corresponding S0 transition state are in good agreement with higher-level calculations, both with regard to geometries and energetics.
View Article and Find Full Text PDFRhodamine B (RhB) is widely used in chemistry and biology due to its high fluorescence quantum yield. In high concentrations, the quantum yield of fluorescence decreases considerably which is attributed to the formation of RhB dimers. In the present work, a possible mechanism of fluorescence quenching in RhB dimers is investigated with the use of time-dependent density functional theory (TD-DFT).
View Article and Find Full Text PDFLight-driven molecular rotary motors derived from chiral overcrowded alkenes represent a broad class of compounds for which photochemical rearrangements lead to large scale motion of one part of the molecule with respect to another. It is this motion/change in molecular shape that is employed in many of their applications. A key group in this class are the molecular rotary motors that undergo unidirectional light-driven rotation about a double bond through a series of photochemical and thermal steps.
View Article and Find Full Text PDFPotential energy surfaces of the ground and the first excited singlet states of the (3R,3'R)-(P,P)-trans-1,1',2,2',3,3',4,4'-octahydro-3,3'-dimethyl-4,4'-biphenanthrylidene rotary molecular motor have been investigated along the central C(4)=C(4') double bond twisting mode starting from the (P,P)-trans and from the (P,P)-cis conformations occurring in the photoisomerization cycle of this compound. The potential energy profiles obtained with the help of the state average spin restricted ensemble-referenced Kohn-Sham (SA-REKS) method feature minima on the excited state surface, the positions of which are displaced with respect to the barriers on the ground state surface toward the isomerization products, the (M,M)-cis and the (M,M)-trans conformations, respectively. The origin of these minima is analyzed and explained.
View Article and Find Full Text PDFA time-independent density functional approach to the calculation of excitation energies from the ground states of molecules typified by the strong nondynamic electron correlation is suggested. The new method is based on the use of the spin-restricted ensemble-referenced Kohn-Sham formalism [Filatov, M.; Shaik, S.
View Article and Find Full Text PDF