Publications by authors named "Andrade-Talavera Y"

Spike timing-dependent plasticity (STDP) is a learning rule important for synaptic refinement and for learning and memory during development. While different forms of presynaptic t-LTD have been deeply investigated, little is known about the mechanisms of somatosensory cortex postsynaptic t-LTD. In the present work, we investigated the requirements and mechanisms for induction of developmental spike timing-dependent long-term depression (t-LTD) at L2/3-L2/3 synapses in the juvenile mouse somatosensory cortex.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid β-peptide (Aβ) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aβ cascade. Exogenous Aβ42 influenced SPPL2b expression in human cell lines and acute mouse brain slices.

View Article and Find Full Text PDF

Windows of plasticity allow environmental experiences to produce intense activity-dependent changes during postnatal development. The reordering and refinement of neural connections occurs during these periods, significantly influencing the formation of brain circuits and physiological processes in adults. Recent advances have shed light on factors that determine the onset and duration of sensitive and critical periods of plasticity.

View Article and Find Full Text PDF

In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Proteins can self-assemble into harmful structures like amyloid fibrils, but molecular chaperones, such as the BRICHOS domain, can help prevent these disease-causing aggregates.
  • The BRICHOS domain has different effects on amyloid neurotoxicity and fibril formation based on a specific conserved aspartate residue, while its ability to prevent amorphous protein aggregation remains unaffected by mutations.
  • The conserved aspartate is critical for structural flexibility and its properties may be influenced by pH levels, indicating that the effectiveness of chaperones can vary under different physiological conditions.
View Article and Find Full Text PDF

The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical properties and signaling pathways in the brain. In general, mGluRs modulate different traits of neuronal physiology, including excitability and plasticity processes. Particularly, group I mGluRs located at the pre- or postsynaptic compartments are involved in spike timing-dependent plasticity (STDP) at hippocampal and neocortical synapses.

View Article and Find Full Text PDF

Mitochondrial diseases are a heterogeneous group of rare genetic disorders caused by mutations in nuclear or mitochondrial DNA (mtDNA). These diseases are frequently multisystemic, although mainly affect tissues that require large amounts of energy such as the brain. Mutations in mitochondrial transfer RNA (mt-tRNA) lead to defects in protein translation that may compromise some or all mtDNA-encoded proteins.

View Article and Find Full Text PDF

Synchronized and properly balanced electrical activity of neurons is the basis for the brain's ability to process information, to learn, and to remember. In Alzheimer's disease (AD), which causes cognitive decline in patients, this synchronization and balance is disturbed by the accumulation of neuropathological biomarkers such as amyloid-beta peptide (Aβ42). Failure of Aβ42 clearance mechanisms as well as desynchronization of crucial neuronal classes such as fast-spiking interneurons (FSN) are root causes for the disruption of the cognition-relevant gamma brain rhythm (30-80 Hz) and consequent cognitive impairment observed in AD.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in App knock-in mice (App).

View Article and Find Full Text PDF

Brain plasticity is widely accepted as the core neurophysiological basis of memory and is generally defined by activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). By using diverse induction protocols like high-frequency stimulation (HFS) or spike-timing dependent plasticity (STDP), such crucial cognition-relevant plastic processes are shown to be impaired in Alzheimer's disease (AD). In AD, the severity of the cognitive impairment also correlates with the level of disruption of neuronal network dynamics.

View Article and Find Full Text PDF

Gamma and theta brain rhythms play important roles in cognition and their interaction can affect gamma oscillation features. Hippocampal theta oscillations depend on cholinergic and GABAergic input from the medial septum-diagonal band of Broca. These projecting neurons undergo degeneration during aging and maintain high levels of neurotrophin receptor p75 (p75).

View Article and Find Full Text PDF
Article Synopsis
  • The study found that presynaptic t-LTD at hippocampal CA3-CA1 synapses is present until about 3 weeks after birth in mice, fading away by 4 weeks.
  • As the mice mature, the same stimulation protocol that previously induced t-LTD switched to inducing t-LTP, which was characterized and analyzed for its mechanisms.
  • Key findings revealed that this t-LTP is presynaptic, does not rely on NMDARs, and requires mGluR activation, Ca entry through L-type channels, and astrocyte-mediated release of adenosine and glutamate for its induction.
View Article and Find Full Text PDF

Key Points: Gamma oscillations (30-80 Hz) are important for cognitive functions and depend on the synchronized activity of fast-spiking interneurons (FSN), which is crucial for network stability. Gamma oscillations are degraded in Alzheimer's disease (AD) patients exhibiting cognitive impairment, with the degree of cognitive decline correlating with the severity of gamma disruption in response to neurotoxic amyloid-beta peptide (Aβ). Small molecule compounds EX15 and RE01 modulate Kv3.

View Article and Find Full Text PDF

The majority of the fibroblast growth factor receptor 1-serotonin 1 A receptor (FGFR1-5-HT1AR) heterocomplexes in the hippocampus appeared to be located mainly in the neuronal networks and a relevant target for antidepressant drugs. Through a neurochemical and electrophysiological analysis it was therefore tested in the current study if astrocytic FGFR1-5-HT1AR heterocomplexes also exist in hippocampus. They may modulate the structure and function of astroglia in the hippocampus leading to possible changes in the gamma oscillations.

View Article and Find Full Text PDF

Molecular chaperones play important roles in preventing protein misfolding and its potentially harmful consequences. Deterioration of molecular chaperone systems upon ageing are thought to underlie age-related neurodegenerative diseases, and augmenting their activities could have therapeutic potential. The dementia relevant domain BRICHOS from the Bri2 protein shows qualitatively different chaperone activities depending on quaternary structure, and assembly of monomers into high-molecular weight oligomers reduces the ability to prevent neurotoxicity induced by the Alzheimer-associated amyloid-β peptide 1-42 (Aβ42).

View Article and Find Full Text PDF

The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin's CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1.

View Article and Find Full Text PDF

Amyloid-β peptide (Aβ) forms plaques in Alzheimer's disease (AD) and is responsible for early cognitive deficits in AD patients. Advancing cognitive decline is accompanied by progressive impairment of cognition-relevant EEG patterns such as gamma oscillations. The endocannabinoid anandamide, a TrpV1-receptor agonist, reverses hippocampal damage and memory impairment in rodents and protects neurons from Aβ-induced cytotoxic effects.

View Article and Find Full Text PDF

Critical periods of synaptic plasticity facilitate the reordering and refining of neural connections during development, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. Presynaptic spike timing-dependent long-term depression (t-LTD) exists in the hippocampus, which depends on the activation of NMDARs and that probably fulfills a role in synaptic refinement. This t-LTD is present until the third postnatal week in mice, disappearing in the fourth week of postnatal development.

View Article and Find Full Text PDF

NMDA receptors (NMDARs) are involved in synaptic transmission and synaptic plasticity in different brain regions, and they modulate glutamate release at different presynaptic sites. Here, we studied whether non-postsynaptic NMDARs, putatively presynaptic (preNMDARs), are tonically active at hippocampal CA3-CA1 synapses, and if they modulate glutamate release. We found that when postsynaptic NMDARs are blocked by MK801, D-AP5 depresses evoked and spontaneous excitatory synaptic transmission, indicating that preNMDARs are tonically active at CA3-CA1 synapses, facilitating glutamate release.

View Article and Find Full Text PDF

Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells.

View Article and Find Full Text PDF

Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-β peptide (Aβ) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces Aβ fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible non-fibrillar aggregation.

View Article and Find Full Text PDF

The FGFR1-5-HT1A heteroreceptor complexes are involved in neuroplasticity in the rat hippocampus and in the mesencephalic raphe 5-HT nerve cells. There exists a 5-HT1A protomer enhancement of FGFR1 protomer signaling. Acute and 10 day treatment with intracerebroventricular (i.

View Article and Find Full Text PDF