The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity.
View Article and Find Full Text PDFACS Sustain Chem Eng
February 2020
The scale-up of chemoenzymatic bromolactonization to 100 g scale is presented, together with an identification of current limitations. The preparative-scale reaction also allowed for meaningful mass balances identifying current bottlenecks of the chemoenzymatic reaction.
View Article and Find Full Text PDFHaloperoxidases are very active catalysts for the in situ generation of electrophilic halide species for oxidative halogenation reactions. In the synthetic community, these catalysts, however, are not widely used. The aim of this mini-review is to critically summarise the current state-of-the-art of haloperoxidase catalysis for organic synthesis.
View Article and Find Full Text PDFIndustrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative decarboxylation can be applied to mixtures of amino acids obtained from plant waste streams, leading to easily separable nitriles.
View Article and Find Full Text PDF