Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear.
View Article and Find Full Text PDFBackground: Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects.
View Article and Find Full Text PDFCaffeinated alcoholic beverages (CABs) are widely consumed despite little known about their behavioral and biological effects. Furthermore, CABs are also popular among adolescents, a particularly vulnerable and maturing demographic. In this preliminary study, we compared levels of daily adolescent voluntary consumption of caffeine (0.
View Article and Find Full Text PDFA direct, real-time reverse transcriptase PCR test on pooled saliva was validated in 2,786 participants against oropharyngeal swabs. Among asymptomatic/pre-symptomatic participants, the test was found to be in 99.21% agreement and 45% more sensitive than contemporaneous oropharyngeal swabs.
View Article and Find Full Text PDFThe zebrafish has become a valuable model for examining ocular lens development, physiology and disease. The zebrafish cloche mutant, first described for its loss of hematopoiesis, also shows reduced eye and lens size, interruption in lens cell differentiation and a cataract likely caused by abnormal protein aggregation. To facilitate the use of the cloche mutant for studies on cataract development and prevention we characterized variation in the lens phenotype, quantified changes in gene expression by qRT-PCR and RNA-Seq and compared the ability of two promoters to drive expression of introduced proteins into the cloche lens.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) of proteins is important to a variety of biological processes both functional and deleterious, including the formation of membraneless organelles, molecular condensations that sequester or release molecules in response to stimuli, and the early stages of disease-related protein aggregation. In the protein-rich, crowded environment of the eye lens, LLPS manifests as cold cataract. We characterize the LLPS behavior of six structural γ-crystallins from the eye lens of the Antarctic toothfish Dissostichus mawsoni, whose intact lenses resist cold cataract in subzero waters.
View Article and Find Full Text PDFBackground: This study compared the performance of five commercially available kits in extracting total RNA from small eukaryotic tissue samples (<15 mg). Total RNA was isolated from fathead minnow (Pimephales promelas) tissues (spleen, blood, kidney, embryo, and larvae) using the Qiagen RNeasy® Plus Mini, Qiagen RNeasy® Plus Universal, Promega Maxwell® 16 LEV simplyRNA, Ambion MagMAX™-96 and Promega SimplyRNA HT kits. Kit performance was evaluated via measures of RNA quantity (e.
View Article and Find Full Text PDFSmall heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity.
View Article and Find Full Text PDFWinter's advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC) in combination with tandem mass spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica), a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability.
View Article and Find Full Text PDFThe movement of water and small solutes is integral to the survival of freezing and desiccation in insects, yet the underlying mechanisms of these processes are not fully known. Recent evidence suggests that aquaporin (AQP) water channels play critical roles in protecting cells from osmotic damage during freezing and desiccation. Our study sequenced, functionally characterized and measured the tissue abundance of an AQP from freeze-tolerant larvae of the gall fly, Eurosta solidaginis (Diptera: Tephritidae).
View Article and Find Full Text PDFAnimal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species' lens into a cortex and nuclear region.
View Article and Find Full Text PDFBackground: The cortex and nucleus of eye lenses are differentiated by both crystallin protein concentration and relative distribution of three major crystallins (alpha, beta, and gamma). Here, we explore the effects of composition and concentration of crystallins on the microstructure of the intact bovine lens (37 degrees C) along with several lenses from Antarctic fish (-2 degrees C) and subtropical bigeye tuna (18 degrees C).
Methods: Our studies are based on small-angle X-ray scattering (SAXS) investigations of the intact lens slices where we study the effect of crystallin composition and concentration on microstructure.
Comp Biochem Physiol Part D Genomics Proteomics
June 2008
The eye lens of the Antarctic toothfish living in the -2 degrees C Southern Ocean is cold-stable. To investigate the molecular basis of this cold stability, we isolated, cloned and sequenced 22 full length crystallin cDNAs. We found two alpha crystallins (alphaA, alphaB), six beta crystallins (betaA1, betaA2, betaA4, betaB1, betaB2, betaB3) and 14 gamma crystallins (gammaN, gammaS1, gammaS2, gammaM1, gammaM3, gammaM4, gammaM5, gammaM7, gammaM8a, gammaM8b, gammaM8c, gammaM8d, gammaM8e, and gammaM9).
View Article and Find Full Text PDFThe eye lenses of the Antarctic nototheniid fishes that inhabit the perennially freezing Antarctic seawater are transparent at -2 degrees C, whereas the cold-sensitive mammalian and tropical fish lenses display cold-induced cataract at 20 degrees C and 7 degrees C, respectively. No cold-cataract occurs in the giant Antarctic toothfish Dissostichus mawsoni lens when cooled to temperatures as low as -12 degrees C, indicating highly cold-stable lens proteins. To investigate this cold stability, we characterised the lens crystallin proteins of the Antarctic toothfish, in parallel with those of the sub-tropical bigeye tuna Thunnus obesus and the endothermic cow Bos taurus, representing three disparate thermal climes (-2 degrees C, 18 degrees C and 37 degrees C, respectively).
View Article and Find Full Text PDF