Publications by authors named "Andolfo Giuseppe"

Powdery mildew (PM) is a widespread plant disease that causes significant economic losses in thousands crops of temperate climates, including species. Multiple scientific studies describe a peculiar form of PM-resistance associated at the inactivation of specific members of the Mildew Locus O (MLO) gene family, referred to as mlo-resistance. The characterization of MLO genes, at the genomic level, would be a first step toward their potential use in breeding programs.

View Article and Find Full Text PDF

The nucleotide-binding and leucine-rich repeat (NB-LRR) genes, also known as resistance ()-genes, play an important role in the activation of immune responses. In recent years, large-scale studies have been performed to highlight the diversification of plant NB-LRR repertories. It is well known that, to provide new functionalities, NB-LRR sequences are subject to duplication, domain fusions and acquisition and other kinds of mutations.

View Article and Find Full Text PDF

A sophisticated innate immune system based on diverse pathogen receptor genes (PRGs) evolved in the history of plant life. To reconstruct the direction and magnitude of evolutionary trajectories of a given gene family, it is critical to detect the ancestral signatures. The rearrangement of functional domains made up the diversification found in PRG repertoires.

View Article and Find Full Text PDF

The activation of plant immunity is mediated by resistance (R)-gene receptors, also known as nucleotide-binding leucine-rich repeat (NB-LRR) genes, which in turn trigger the authentic defense response. R-gene identification is a crucial goal for both classic and modern plant breeding strategies for disease resistance. The conventional method identifies NB-LRR genes using a protein motif/domain-based search (PDS) within an automatically predicted gene set of the respective genome assembly.

View Article and Find Full Text PDF

The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.).

View Article and Find Full Text PDF

Background: Enterobacteria of the genus Providencia are mainly known as opportunistic human pathogens but have been isolated from highly diverse natural environments. The species Providencia vermicola comprises insect pathogenic bacteria carried by entomoparasitic nematodes and is investigated as a possible insect biocontrol agent. The recent publication of several genome sequences from bacteria assigned to this species has given rise to inconsistent preliminary results.

View Article and Find Full Text PDF

Many studies showed that few degrees above tomato optimum growth temperature threshold can lead to serious loss in production. Therefore, the development of innovative strategies to obtain tomato cultivars with improved yield under high temperature conditions is a main goal both for basic genetic studies and breeding activities. In this paper, a F4 segregating population was phenotypically evaluated for quantitative and qualitative traits under heat stress conditions.

View Article and Find Full Text PDF

Genome-wide annotation reveals that the gene birth-death process of the Cucurbita R family is associated with a species-specific diversification of TNL and CNL protein classes. The Cucurbitaceae family includes nearly 1000 plant species known universally as cucurbits. Cucurbita genus includes many economically important worldwide crops vulnerable to more than 200 pathogens.

View Article and Find Full Text PDF

Tomato ( L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution.

View Article and Find Full Text PDF
Article Synopsis
  • * This paper discusses the implementation of GS in tomato breeding, highlighting key factors that affect prediction accuracy, like the number of markers and the size of the training population.
  • * The study suggests that GS has proven effective for selecting superior tomato genotypes and proposes a new framework, supported by computer science, to optimize tomato breeding strategies.
View Article and Find Full Text PDF

Genomic and transcriptomic studies in plants and, more in deep, in grapevine reveal that the disease-resistance RNL gene family is highly variable. RNLs (RPW8-NLRs) are a phylogenetically distinct class of nucleotide oligomerization domain (NOD)-like receptors (NLRs) identified in plants. Two RNLs, namely, the NRG1 (N Requirement Gene 1) and the ADR1 (Activated Disease Resistance 1), have been characterized; however, little is known about the RNL evolutionary history in higher plants.

View Article and Find Full Text PDF

Plant innate immunity mostly relies on nucleotide-binding (NB) and leucine-rich repeat (LRR) intracellular receptors to detect pathogen-derived molecules and to induce defense responses. A multitaxa reconstruction of NB-domain associations allowed us to identify the first NB-LRR arrangement in the Chlorophyta division of the Viridiplantae. Our analysis points out that the basic NOD-like receptor (NLR) unit emerged in Chlorophytes by horizontal transfer and its diversification started from Toll/interleukin receptor-NB-LRR members.

View Article and Find Full Text PDF

The huge amounts of biomass residues, remaining in the field after tomato fruits harvesting, can be utilized to produce bioenergy. A multiple level approach aimed to characterize two Solanum pennellii introgression lines (ILs), with contrasting phenotypes for plant architecture and biomass was carried out. The study of gene expression dynamics, microscopy cell traits and qualitative and quantitative cell wall chemical compounds variation enabled the discovery of key genes and cell processes involved biomass accumulation and composition.

View Article and Find Full Text PDF

With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S.

View Article and Find Full Text PDF

Background: Powdery mildew (PM) is a widespread fungal disease of plants in temperate climates, causing significant economic losses in agricultural settings. Specific homologs of the MLO gene family are PM susceptibility factors, as their loss-of function results in durable PM resistance (mlo resistance) in several plant species. The role of MLO susceptibility genes in plant-pathogen interactions is still elusive, however it is known that they are strongly upregulated following PM infection.

View Article and Find Full Text PDF

The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected.

View Article and Find Full Text PDF

One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods.

View Article and Find Full Text PDF

Background: The powdery mildew disease affects thousands of plant species and arguably represents the major fungal threat for many Cucurbitaceae crops, including melon (Cucumis melo L.), watermelon (Citrullus lanatus L.) and zucchini (Cucurbita pepo L.

View Article and Find Full Text PDF

Our understanding of plant-pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defense response activation.

View Article and Find Full Text PDF

Background: ATP-binding cassette proteins have been recognized as playing a crucial role in the regulation of growth and resistance processes in all kingdoms of life. They have been deeply studied in vertebrates because of their role in drug resistance, but much less is known about ABC superfamily functions in plants.

Results: Recently released plant genome sequences allowed us to identify 803 ABC transporters in four vascular plants (Oryza.

View Article and Find Full Text PDF

Background: The availability of draft crop plant genomes allows the prediction of the full complement of genes that encode NB-LRR resistance gene homologs, enabling a more targeted breeding for disease resistance. Recently, we developed the RenSeq method to reannotate the full NB-LRR gene complement in potato and to identify novel sequences that were not picked up by the automated gene prediction software. Here, we established RenSeq on the reference genome of tomato (Solanum lycopersicum) Heinz 1706, using 260 previously identified NB-LRR genes in an updated Solanaceae RenSeq bait library.

View Article and Find Full Text PDF

Since gene expression approaches constitute a starting point for investigating plant-pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp.

View Article and Find Full Text PDF

The Plant Resistance Genes database (PRGdb; http://prgdb.org) is a comprehensive resource on resistance genes (R-genes), a major class of genes in plant genomes that convey disease resistance against pathogens. Initiated in 2009, the database has grown more than 6-fold to recently include annotation derived from recent plant genome sequencing projects.

View Article and Find Full Text PDF