Publications by authors named "Andolfo A"

The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor ( )-based protocol to accelerate oligodendrocyte differentiation from hiPSC-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence.

View Article and Find Full Text PDF

The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor (SOX10)-based protocol to accelerate oligodendrocyte differentiation from human induced pluripotent stem cell (hiPSC)-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence.

View Article and Find Full Text PDF

Alterations in the dopamine catabolic pathway are known to contribute to the degeneration of nigrostriatal neurons in Parkinson's disease (PD). The progressive cellular buildup of the highly reactive intermediate 3,4-dihydroxyphenylacetaldehye (DOPAL) generates protein cross-linking, oligomerization of the PD-linked αSynuclein (αSyn) and imbalance in protein quality control. In this scenario, the autophagic cargo sequestome-1 (SQSTM1/p62) emerges as a target of DOPAL-dependent oligomerization and accumulation in cytosolic clusters.

View Article and Find Full Text PDF

Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC, but their diversity has prevented therapeutic exploitation.

View Article and Find Full Text PDF
Article Synopsis
  • Facioscapulohumeral muscular dystrophy (FSHD) is a common neuromuscular disorder without a cure, linked to increased expression of the transcription factor DUX4, leading to muscle wasting.
  • MATR3, a protein associated with ALS and similar conditions, regulates DUX4 by binding to its DNA-binding domain, which helps protect muscle cells from DUX4's harmful effects.
  • Research suggests that a shorter form of MATR3 is effective in blocking DUX4 toxicity, positioning MATR3 as a potential target for FSHD treatment development.
View Article and Find Full Text PDF

Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent neuromuscular disorders. The disease is linked to copy number reduction and/or epigenetic alterations of the D4Z4 macrosatellite on chromosome 4q35 and associated with aberrant gain of expression of the transcription factor DUX4, which triggers a pro-apoptotic transcriptional program leading to muscle wasting. As today, no cure or therapeutic option is available to FSHD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer has a low survival rate due to late diagnosis and treatment challenges, causing significant impacts on patient quality of life.
  • A study investigated the effects of a specific probiotic blend on pancreatic cancer in mice, both alone and alongside standard chemotherapy treatments (gemcitabine and nab-paclitaxel), measuring tumor volume and other biological variables.
  • The administration of probiotics improved gut health, reduced chemotherapy-induced side effects, and enhanced the diversity of gut microbiota, indicating potential benefits of probiotics in managing consequences of chemotherapy in pancreatic cancer treatment.
View Article and Find Full Text PDF

Introduction: The integrity of the gut barrier (GB) is fundamental to regulate the crosstalk between the microbiota and the immune system and to prevent inflammation and autoimmunity at the intestinal level but also in organs distal from the gut such as the pancreatic islets. In support to this idea, we recently demonstrated that breakage of GB integrity leads to activation of islet-reactive T cells and triggers autoimmune Type 1 Diabetes (T1D). In T1D patients as in the NOD mice, the spontaneous model of autoimmune diabetes, there are alterations of the GB that specifically affect structure and composition of the mucus layer; however, it is yet to be determined whether a causal link between breakage of the GB integrity and occurrence of autoimmune T1D exists.

View Article and Find Full Text PDF

Innovative pro-regenerative treatment strategies for progressive multiple sclerosis (PMS), combining neuroprotection and immunomodulation, represent an unmet need. Neural precursor cells (NPCs) transplanted in animal models of multiple sclerosis have shown preclinical efficacy by promoting neuroprotection and remyelination by releasing molecules sustaining trophic support and neural plasticity. Here we present the results of STEMS, a prospective, therapeutic exploratory, non-randomized, open-label, single-dose-finding phase 1 clinical trial ( NCT03269071 , EudraCT 2016-002020-86), performed at San Raffaele Hospital in Milan, Italy, evaluating the feasibility, safety and tolerability of intrathecally transplanted human fetal NPCs (hfNPCs) in 12 patients with PMS (with evidence of disease progression, Expanded Disability Status Scale ≥6.

View Article and Find Full Text PDF

Unlabelled: Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC).

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls).

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicates gut microbiota and their metabolites, particularly butyrate from dietary fiber fermentation, can influence cancer development and therapy response.
  • * In experiments, butyrate not only slowed the growth of pancreatic cancer cells and enhanced the effectiveness of the chemotherapy drug gemcitabine but also improved gut health and altered the microbiota in a beneficial way, suggesting its potential role as a supportive treatment in pancreatic cancer management.
View Article and Find Full Text PDF

Biliary diseases represent around 10% of all chronic liver diseases and affect both adults and children. Currently available biochemical tests detect cholestasis but not early liver fibrosis. Circulating extracellular vesicles (EVs) provide a noninvasive, real-time molecular snapshot of the injured organ.

View Article and Find Full Text PDF

Objective: Significant efforts are currently being made to identify novel biomarkers for the diagnosis and risk stratification of prostate cancer (PCa). Metabolomics can be a very useful approach in biomarker discovery because metabolites are an important read-out of the disease when characterized in biological samples. We aimed to determine a metabolomic signature which can accurately distinguish men with clinically significant PCa from those affected by benign prostatic hyperplasia (BPH).

View Article and Find Full Text PDF

Context: In the emergency ward, where the use of ultrasound is common (including for sterile procedures), ward equipment is constantly exposed to high risks of microbiological contamination. There are no clear guidelines for disinfection control practices in emergency departments, and it is not known how emergency ward doctors follow good hygiene practices.

Method: A multi-centre audit was conducted in 16 emergency services from Northern France regional hospitals, in form of a questionnaire.

View Article and Find Full Text PDF

Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types.

View Article and Find Full Text PDF

Background: In the last years, several clinical trials have proved the safety and efficacy of adipose-derived stem/stromal cells (ASC) in contrasting osteoarthritis (OA). Since ASC act mainly through paracrine mechanisms, their secretome (conditioned medium, CM) represents a promising therapeutic alternative. ASC-CM is a complex cocktail of proteins, nucleic acids, and lipids released as soluble factors and/or conveyed into extracellular vesicles (EV).

View Article and Find Full Text PDF

ERBB2 is a ligand-less tyrosine kinase receptor expressed at very low levels in normal tissues; when overexpressed, it is involved in malignant transformation and tumorigenesis in several carcinomas. In cancer cells, ERBB2 represents the preferred partner of other members of the ERBB receptor family, leading to stronger oncogenic signals, by promoting both ERK and AKT activation. The identification of the specific signaling downstream of ERBB2 has been impaired by the lack of a ligand and of an efficient way to selectively activate the receptor.

View Article and Find Full Text PDF

Perfluorinated organic compounds (PFCs) are nontoxic, biocompatible, bioavailable, and bioorthogonal species which possess the unique ability to segregate away from both polar and nonpolar solvents producing a compact fluorophilic phase. Traditional techniques of fluorous chemical proteomics are generally applied to enrich biological samples in target protein(s) exploiting this property of PFCs to build fluorinated probes able to covalently bind to protein ensembles and being selectively extracted by fluorophilic solvents. Aiming at building a strategy able to avoid irreversible modification of the analyzed biosystem, a novel fully noncovalent probe is presented as an enabling tool for the recognition and isolation of biological protein(s).

View Article and Find Full Text PDF

Corneal neo-vascularization (CNV) is a highly prevalent medical condition which impairs visual acuity. The role of specific proteins in modulating CNV has been extensively reported, although no studies have described the entire human proteome in CNV corneas. In this paper, we performed a proteomic analysis of vascularized vs healthy corneal stroma, in a CNV mouse model and in CNV-affected patients, with a specific focus on extracellular matrix (ECM) proteins.

View Article and Find Full Text PDF

Lymph nodes (LNs) are secondary lymphoid tissues that play a critical role in filtering the lymph and promoting adaptive immune responses. Surgical resection of LNs, radiation therapy, or infections may damage lymphatic vasculature and compromise immune functions. Here, we describe the generation of functional synthetic lympho-organoids (LOs) using LN stromal progenitors and decellularized extracellular matrix-based scaffolds, two basic constituents of secondary lymphoid tissues.

View Article and Find Full Text PDF