The aim of the present study was to verify whether the expectation of perturbations while performing side-step cutting manoeuvres influences lower limb EMG activity, heel kinematics and ground reaction forces. Eighteen healthy men performed two sets of 90° side-step cutting manoeuvres. In the first set, 10 unperturbed trials (Base) were performed while stepping over a moveable force platform.
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of unilateral balance training on the reactive recovery of balance for both trained and untrained limbs. Twenty-three subjects were randomly assigned to either a control group (CG) or a training group (TG). The latter performed six weeks of balance training for the right leg.
View Article and Find Full Text PDFBalance recovery during walking requires complex sensory-motor integration. Mechanisms to avoid falls are active concomitantly with human locomotion motor patterns. It has been suggested that gait can be described by a set of motor modules (synergies), but little is known on the modularity of gait during recovery of balance due to unexpected slips.
View Article and Find Full Text PDFThe aim of the study was to verify whether heel kinematics, ground reaction forces and electromyography (EMG) during walking are affected when anticipating slips in anterior-posterior (AP) and medial-lateral directions (ML). Eight healthy men walked through a 7-m walkway, stepping on a robotic force platform. Initially, baseline (BASE) gait mechanics were assessed with the platform at rest.
View Article and Find Full Text PDF